education

Department:
Education
PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 11

TIME: 2 hours
MARKS: 100

This marking guideline consists of 7 pages.

QUESTION 1

1.1. $C \quad \checkmark \checkmark$
1.2. B $\checkmark \checkmark$
1.3. A $\checkmark \checkmark$
1.4. D $\checkmark \checkmark$
1.5. C $\checkmark \checkmark$
1.6. B $\checkmark \checkmark$
1.7. A $\checkmark \checkmark$

$$
7 \times 2=(14)
$$

QUESTION 2

2.1.1 $A \checkmark$ and $I \checkmark$

2.1.2. (B and F) $\checkmark \checkmark \mathrm{OR}(\mathrm{D}$ and F$) \quad(2$ or 0$)$
2.1.3. G \checkmark
2.1.4. $\mathrm{G} \checkmark$
2.1.5. C \checkmark
2.1.6.E \checkmark
$2.2 \mathrm{H}_{2} \mathrm{O}$ has hydrogen bonding \checkmark and $\mathrm{H}_{2} \mathrm{~S}$ has dipole- dipole forces. \checkmark The intermolecular forces in water are stronger \checkmark Therefore more energy is required to break the IMF in water.
2.3.

2.4.1 NON- POLAR \checkmark
CO_{2} is a symmetrical molecule with even distribution of electrons \checkmark
There is no net dipole moment/dipoles cancel out $\checkmark /$. There is no distinct opposite positive and negative ends.
2.4.2 London forces \checkmark

QUESTION 3

3.1. Capillarity / height \checkmark
3.2. Nail polish remover \checkmark
3.3. It has the weakest intermolecular forces /cohesive forces \checkmark molecules separate easily. \checkmark The adhesive forces are stronger than the cohesive forces/IMF \checkmark
3.4. Nail polish remover; water ; glycerine $\checkmark \checkmark$
3.5 Glycerine \checkmark

QUESTION 4

4.1.1 Charle's Law -- \checkmark The volume of an enclosed gas is directly proportional to its Kelvin temperature provided the pressure is kept constant. $\checkmark \checkmark$
4.1.2. Amount/mass of gas \checkmark
4.1.3. volume is directly proportional to Kelvin temperature/ $V \alpha T \checkmark /$ volume is linearly proportional to Celsius temperature

ACCEPT As temperature increases, volume increases.
4.1.4. $P_{3} \checkmark$
4.1.5 From $\mathrm{pV}=\mathrm{nRT}$, gradient which is V / T is equal to nR / P. \checkmark Since R and n are constant, Gradient is inversely proportional to the pressure/ higher pressure represents smaller gradient.

OR
From Boyles law --- at a constant temperature, \checkmark the gas with the highest volume will have the lowest pressure $\checkmark \mathrm{pV}=\mathrm{k} \checkmark$
4.2.

$$
\begin{aligned}
& \text { OPTION } 1 \\
& \text { Change in pressure }=100-55=45 \mathrm{kPa} \checkmark \\
& \mathrm{pV}=\mathrm{nRT} \checkmark \\
& \underline{45 \times 10^{3} \times 10 \times 10^{-3}} \checkmark=\mathrm{n} \times \underline{8.31 \times 298} \checkmark \\
& \mathrm{n}=0.182 \mathrm{~mol} \checkmark \\
& \mathrm{n}=\mathrm{m} / \mathrm{M} \checkmark \\
& \underline{0.182=\mathrm{m} / 32} \checkmark \\
& m=5.824 \mathrm{~g} \checkmark \text { of } \mathrm{O}_{2} \text { is lost }
\end{aligned}
$$

NB : ACCEPT p values in kPa with V values in dm^{3}

OPTION 2

$\mathrm{pV}=\mathrm{nRT} \checkmark$
$100 \times 10^{3} \times 10 \times 10^{-3}=n \times 8.31 \times 298$
$\mathrm{n}=0.404 \mathrm{~mol}$ (original no. of moles of oxygen in vessel)
$\mathrm{pV}=\mathrm{nR} T$
$55 \times 10^{3} \times 10 \times 10^{-3}=\mathrm{n} \times 8.31 \times 298 \checkmark$
$\mathrm{n}=0.222 \mathrm{~mol}$ (no of mol in vessel after leak is repaired)
no of moles of gas leaked
$=0.404-0.222 \checkmark$
$=0.182 \mathrm{~mol} \checkmark$
$\mathrm{n}=\mathrm{m} / \mathrm{M} \checkmark$
$0.182=m / 32 \checkmark$
$\mathrm{m}=5.824 \mathrm{~g} \checkmark$ of O_{2} is lost

QUESTION 5

5.1 Simplest whole number ratio in which elements in a compound combine $\checkmark \checkmark$
5.2.

Element	Mass per 100 g	$\mathrm{n}=\mathrm{m} / \mathrm{M}(\mathrm{mol})$	Simplest ratio
C	54.56	$54.56 / 12=4.547 \checkmark$	$4.547 / 2.2725=2$
H	$9.08 \checkmark$	$9.08 / 1=9.08 \checkmark$	
O	36.36	$36.36 / 16=2.2725 \checkmark$	$2.2725 / 2.2725=4$

Empirical formula is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \checkmark$
$5.3 \mathrm{n}=$ True $\mathrm{Mr}_{\mathrm{r}} /$ Empirical Mr_{r}
$=132 / 44$
$=3 \checkmark$
Molecular formula is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3} \checkmark$ (award both marks if answer correct without calculation)

QUESTION 6

6.1. The amount of substance having the same number of particles as there are atoms in 12 g of $\mathrm{C}-12$. $\quad \checkmark \checkmark /$ Amount of substance having $6,02 \times 10^{23}$ elementary particles.
6.2.

6.4.

Positive marking form 6.2/6.3

$$
\begin{array}{rlc}
\mathrm{CO}_{2}: \mathrm{Fe}_{2} \mathrm{O}_{3} & \text { OR } & \mathrm{Fe}: \mathrm{Fe}_{2} \mathrm{O}_{3} \\
3: 1 & & 2: 1 \\
\mathrm{nFe} \\
2 & \mathrm{O}_{3} & =2.8125 / 3 \checkmark \\
& =0.9375 \mathrm{~mol} & \\
& & \mathrm{nFe}_{2} \mathrm{O}_{3}=1.875 / 2 \\
\mathrm{mFe} \mathrm{O}_{3} & =\mathrm{nM} & =0.9375 \mathrm{~mol} \\
& =\underline{0.9375 \times 160 \checkmark} & \\
& =150 \mathrm{~g} & \\
& &
\end{array}
$$

(4)

$$
\begin{aligned}
\% \text { purity } & =\frac{150 / 160 \times 100}{} \quad \\
& =93,75 \% \checkmark
\end{aligned}
$$

QUESTION 7

7.1 Substance that is used up completely in a reaction.
7.2

Ratio	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{2}$
Moles	Ca	$\mathrm{V}_{2} \mathrm{O}_{5}$	CaO	V
Initial	$500 \checkmark$	$175 \quad \checkmark$	0	0
Change	$500 \checkmark$	100	500	$200 \checkmark$
End	0	75	500	200

Ca
$\mathrm{n}=\mathrm{m} / \mathrm{M}$
$\mathrm{n}=\mathrm{m} / \mathrm{M}$
= 20 000/40
= $31850 / 182$
$=500 \mathrm{~mol}$
$=175 \mathrm{~mol}$
nv formed $=200 \mathrm{~mol}$

$$
\begin{align*}
m & =n \times M \\
& =200 \times 51 \checkmark \\
& =10200 \mathrm{~g} \checkmark \tag{6}
\end{align*}
$$

7.3% yield $=\underline{8670 / 10200 \times 100} \checkmark$

$$
\begin{equation*}
=85 \% \checkmark \tag{2}
\end{equation*}
$$

[10]

QUESTION 8

8.1 Amount of solute per litre of solution. $\checkmark \checkmark$
8.2. $n=m / M$

$$
\begin{align*}
= & 4.14 / 69 \\
& =0.06 \mathrm{~mol} \tag{2}
\end{align*}
$$

8.3 Positive marking from 8.2.
$0.05=0.06 / \mathrm{V} \checkmark$
$8.4 \underbrace{V=1,20 \mathrm{dm}^{3} \checkmark}_{\text {Positive marking from } 8.3}$
$\underline{0.05 \times 1.20} \sqrt{ }=\underline{c_{2} \times 1.45}$
$\mathrm{C}_{2}=0.04 \mathrm{~mol}^{2} \mathrm{dm}^{-3} \checkmark$

Positive marking from 8.2. and 8.3

$\mathrm{C}=\mathrm{n} / \mathrm{V} \checkmark$
$=0.06 \checkmark / 1.45 \checkmark$
$\mathrm{C}=0.04 \mathrm{~mol}^{2} . \mathrm{dm}^{-3} \checkmark$

