basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 11

PHYSICAL SCIENCES: CHEMISTRY (P2)
NOVEMBER 2014

MARKS: 150

TIME: 3 hours

This question paper consists of 14 pages and 2 data sheets.

INSTRUCTIONS AND INFORMATION

1. Write your name in the appropriate space on the ANSWER BOOK.
2. This question paper consists of ELEVEN questions. Answer ALL the questions in the ANSWER BOOK.
3. Start EACH question on a NEW page in the ANSWER BOOK.
4. Number the answers correctly according to the numbering system used in this question paper.
5. Leave ONE line between two subquestions, for example between QUESTION 2.1 and QUESTION 2.2.
6. You may use a non-programmable calculator.
7. You may use appropriate mathematical instruments.
8. YOU ARE ADVISED TO USE THE ATTACHED DATA SHEETS.
9. Show ALL formulae and substitutions in ALL calculations.
10. Round off your FINAL numerical answers to a minimum of TWO decimal places.
11. Give brief motivations, discussions, et cetera where required.
12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A-D) next to the question number (1.1-1.10) in the ANSWER BOOK.
1.1 A substance that donates electrons during a chemical reaction is a/an ...

A Arrhenius acid.
B Arrhenius base.
C reducing agent.
D oxidising agent.
1.2 Which ONE of the following species contains a dative covalent bond?

A $\quad \mathrm{NH}_{3}$
B CH_{4}
C $\mathrm{H}_{3} \mathrm{O}^{+}$
D $\quad \mathrm{NF}_{3}$
1.3 Which ONE of the following compounds has dipole-dipole forces between their molecules?

A CO_{2}
B HCl
C $\quad \mathrm{Cl}_{2}$
D CCl_{4}
1.4 Consider the following chemical reaction:

$$
\mathrm{HCO}_{3}^{-}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}
$$

Which ONE of the following CORRECTLY identifies the order of Lowry-Brönsted acids and bases in the above reaction?

A Base, acid, acid, base
B Acid, base, base, acid
C Acid, base, acid, base
D Base, acid, base, acid
1.5 Which ONE of the following represents the greatest mass?

A One chlorine atom
B One chlorine molecule
C One mole of chlorine
D One gram of chlorine
1.6 Consider the Lewis structure of a compound below:

Which ONE of the following is CORRECT?

	Name of element X	Name of element \mathbf{Y}	Molecular shape of compound
A	Chlorine	Oxygen	Angular
B	Oxygen	Chlorine	Linear
C	Chlorine	Sulphur	Linear
D	Sulphur	Chlorine	Angular

1.7 Consider the reaction represented by the equation below:

$$
2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{CO}(\mathrm{~g}) \quad \Delta \mathrm{H}=+53,2 \mathrm{~kJ}
$$

Which ONE of the following statements is TRUE?
For each mole of Fe that reacts, ...
A $26,6 \mathrm{~kJ}$ of energy are released.
B $\quad 26,6 \mathrm{~kJ}$ of energy are absorbed.
C $\quad 53,2 \mathrm{~kJ}$ of energy are released.
D $53,2 \mathrm{~kJ}$ of energy are absorbed.
1.8 In which ONE of the following graphs does the dotted line CORRECTLY represent the deviation of a real gas from ideal gas behaviour?
A

B

C

D

$1.9 \quad 10$ moles of hydrogen gas $\left(\mathrm{H}_{2}\right)$ and 2,5 moles of nitrogen gas $\left(\mathrm{N}_{2}\right)$ are mixed and allowed to react to form ammonia $\left(\mathrm{NH}_{3}\right)$ according to the following balanced equation:

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

If 4 moles of $\mathrm{NH}_{3}(\mathrm{~g})$ is formed during the reaction, the number of moles of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2}(\mathrm{~g})$ that remain in the container are respectively:

	Moles of $\mathbf{H}_{\mathbf{2}} \mathbf{(g)}$	Moles of $\mathbf{N}_{\mathbf{2}} \mathbf{(g)}$
A	0	0
B	7	1,5
C	4	0,5
D	4	2

1.10 Two gas syringes, \mathbf{X} and \mathbf{Y}, each contains the same gas at STP. The volume of syringe \mathbf{X} is $10 \mathrm{~cm}^{3}$ and that of syringe \mathbf{Y} is $20 \mathrm{~cm}^{3}$ as shown below. Assume ideal gas behaviour.

Which ONE of the following statements is CORRECT?
A The average kinetic energy of the molecules in \mathbf{X} is less than that of the molecules in \mathbf{Y}.

B The total kinetic energy of the molecules in \mathbf{X} is less than that of the molecules in \mathbf{Y}.

C The number of gas molecules in \mathbf{X} is equal to the number of gas molecules in \mathbf{Y}.

D The product pV in \mathbf{X} is equal to the product pV in \mathbf{Y}.

QUESTION 2 (Start on a new page.)

The graph below shows the change in energy that takes place when a hydrogen (H) atom approaches a bromine (Br) atom.

2.1 Define the term bond length.
2.2 From the graph, write down the:
2.2.1 Bond length, in pm , of the $\mathrm{H}-\mathrm{Br}$ bond
2.2.2 Energy, in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$, needed to break the $\mathrm{H}-\mathrm{Br}$ bond
2.2.3 Name of the potential energy represented by \mathbf{E}
2.3 How will the bond length of an H-F bond compare to that of the $\mathrm{H}-\mathrm{Br}$ bond?

Write down EQUAL TO, SHORTER THAN or LONGER THAN. Give a reason for the answer.

QUESTION 3 (Start on a new page.)

Both aluminium fluoride $\left(\mathrm{AlF}_{3}\right)$ and phosphorous trifluoride $\left(\mathrm{PF}_{3}\right)$ contain fluorine. Aluminium fluoride is a colourless solid used in the production of aluminium, whilst phosphorous trifluoride is a poisonous, colourless gas.
3.1 Explain the difference between a covalent bond and an ionic bond.
3.2 Name the type of chemical bond between particles in:

$$
\begin{equation*}
\text { 3.2.1 } \mathrm{AlF}_{3} \tag{1}
\end{equation*}
$$

3.2.2 $\quad \mathrm{PF}_{3}$
3.3 Draw the Lewis structures for:
3.3.1 AlF_{3}
(3)
3.3.2 PF_{3}
3.4 Write down the molecular shape of PF_{3}.
3.5 The melting point of AlF_{3} is $1291^{\circ} \mathrm{C}$ and that of PF_{3} is $-151^{\circ} \mathrm{C}$.

Fully explain this difference in melting point.

QUESTION 4 (Start on a new page.)

The boiling points of four compounds of hydrogen, represented by the letters $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}, are given in the table below.

	Formula	Boiling point $\left({ }^{\circ} \mathbf{C}\right)$
\mathbf{P}	CH_{4}	-164
\mathbf{Q}	NH_{3}	-33
\mathbf{R}	$\mathrm{H}_{2} \mathrm{O}$	100
\mathbf{S}	SiH_{4}	-112

4.1 Define the term boiling point.
4.2 Fully explain the difference in boiling points between compound \mathbf{P} and:
4.2.1 Compound Q
4.2.2 Compound \mathbf{S}
4.3 Explain why the boiling points of compounds \mathbf{Q} and \mathbf{R} differ by referring to ELECTRONEGATIVITY and DEGREE OF POLARITY.
4.4 Write down the letter from the table that represents the following:
4.4.1 ONE polar compound
4.4.2 ONE non-polar compound

QUESTION 5 (Start on a new page.)

5.1 Explain what is meant by the term temperature of a gas.
5.2 Two learners investigate the relationship between the temperature and the pressure of an enclosed gas. The learners use different samples of the same gas in two identical containers of fixed volumes.

Graph \mathbf{P} and Graph \mathbf{Q} below represent the results obtained by the learners.

5.2.1 State Guy Lussac's law in words.
5.2.2 Use the law in QUESTION 5.2.1 to determine the value of temperature \mathbf{X}, shown on the graph, in ${ }^{\circ} \mathrm{C}$.
5.2.3 Explain, using the relevant formulae, why graph \mathbf{Q} has a smaller gradient than graph \mathbf{P}.
5.3 A certain gas with a mass of $2,2 \mathrm{~g}$ occupies a volume of $0,831 \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$ and pressure 150 kPa .
5.3.1 Calculate the molar mass of the gas. Assume that the gas behaves like an ideal gas.
5.3.2 Write down the MOLECULAR FORMULA or NAME of the gas in QUESTION 5.3.1.

QUESTION 6 (Start on a new page.)

6.1 Define the term molar mass of a substance.
6.2 Calculate the number of moles of water in 100 g of water.
6.3 Methyl benzoate is a compound used in the manufacture of perfumes. It is found that a $5,325 \mathrm{~g}$ sample of methyl benzoate contains $3,758 \mathrm{~g}$ of carbon, $0,316 \mathrm{~g}$ of hydrogen and $1,251 \mathrm{~g}$ of oxygen.
6.3.1 Define the term empirical formula.
6.3.2 Determine the empirical formula of methyl benzoate.
6.3.3 If the molar mass of methyl benzoate is $136 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, what is its molecular formula?

QUESTION 7 (Start on a new page.)

7.1 Define the term limiting reactant.
7.2 Iron (Fe) reacts with sulphur (S) to form iron sulphide (FeS) according to the following balanced equation:

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{S}(\mathrm{~s}) \rightarrow \mathrm{FeS}
$$

7.2.1 Calculate which of the two substances will be used up completely if 20 g of Fe and 10 g of S are mixed and heated.
7.2.2 How many grams of the other substance are in excess?
7.3 Magnesium burns in air to form magnesium oxide according to the following balanced equation:

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

If the percentage yield of this reaction is only 80%, calculate the mass of magnesium that needs to be burned to produce 30 g of magnesium oxide.

QUESTION 8 (Start on a new page.)

Hydrogen gas and oxygen gas react to form water according to the following balanced equation:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+241,8 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
$$

The activation energy $\left(E_{A}\right)$ for this reaction is $1370 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$.
8.1 Define the term activation energy.
8.2 Sketch a potential energy versus reaction coordinate graph for the above reaction. Clearly label the axes and indicate the following on the graph:

- $\Delta \mathrm{H}$
- E_{A} for the forward reaction
- Reactants (R) and products (\mathbf{P})
- Activated complex (X)
8.3 Write down the value of the:
8.3.1 Heat of reaction
8.3.2 Activation energy for the following reaction:

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \tag{2}
\end{equation*}
$$

QUESTION 9 (Start on a new page.)

9.1 Limestone, or sometimes ash, is used in pit latrines (long drops) to neutralise acidic waste.

Limestone reacts with hydrochloric acid according to the following UNBALANCED equation:

$$
\begin{equation*}
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g}) \tag{2}
\end{equation*}
$$

9.1.1 Define an acid in terms of the Arrhenius theory.
9.1.2 Is ash acidic or basic?
9.1.3 Rewrite the above equation into your ANSWER BOOK and then balance the equation.
9.2 Sulphuric acid reacts with water in two steps as represented by the equations below.

Equation I: $\quad \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})$
Equation II: $\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})$
9.2.1 Define the term ampholyte.
9.2.2 Write down the FORMULA of a species that acts as ampholyte in the above reactions.
9.2.3 Write down the NAME of the conjugate base of the hydrogen sulphate ion.
9.3 A standard sodium carbonate solution is prepared in a $250 \mathrm{~cm}^{3}$ volumetric flask.

During a titration, $20 \mathrm{~cm}^{3}$ of a $0,1 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ nitric acid solution neutralises $25 \mathrm{~cm}^{3}$ of the above standard solution according to the following balanced equation:

$$
2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g})
$$

9.3.1 Write down the NAME of the salt formed in the above reaction.
9.3.2 Calculate the mass of sodium carbonate used to prepare the standard solution in the volumetric flask.

QUESTION 10 (Start on a new page.)

Nitric acid and copper reacts according to the following unbalanced equation:

$$
\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

10.1 Define reduction in terms of oxidation numbers.
10.2 For this reaction, write down the FORMULA of the:
10.2.1 Substance that is oxidised
10.2.2 Reducing agent

Allocate oxidation numbers to the relevant species and then explain the answer.
$\begin{array}{ll}\text { 10.2.3 } & \begin{array}{l}\text { Oxidising agent } \\ \text { Explain the answer in terms of electron transfer. }\end{array}\end{array}$
10.3 Balance the equation using the ion-electron method. Show the oxidation and reduction half-reactions during the balancing.

QUESTION 11 (Start on a new page.)

Mining has been the main driving force behind the history and development of South Africa. Diamond and gold production may now be well down from their peaks, though South Africa is still number 5 in gold. It is the world's largest producer of chrome, manganese, platinum and vanadium, as well as the world's third largest coal exporter. In 2012 South Africa overtook India to become the world third biggest iron ore supplier to China, the world's largest consumer of iron ore.
11.1 Choose from the list below the mining activity that you have studied and then answer the questions that follow.
gold; iron; phosphate; coal; diamonds; copper; platinum;
zinc; chromium; asbestos; manganese
11.1.1 What is the location of the major mining activity in South Africa?
11.1.2 What type of mining is used to recover the selected mineral?
11.2 Mining has advantages and disadvantages.
11.2.1 Give TWO reasons why the mining industry is so important to the South African economy.
11.2.2 Write down TWO negative impacts that mining has on the environment.
11.3 A large deposit of a precious metal is discovered in South Africa.

Write down TWO factors which have to be considered before developing the site for mining.

DATA FOR PHYSICAL SCIENCES GRADE 11
 PAPER 2 (CHEMISTRY)
 gegewens VIr fisiese Wetenskappe graid 11 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Avogadro's constant Avogadro-konstante	N_{A}	$6,02 \times 10^{23} \mathrm{~mol}^{-1}$
Molar gas constant Molêre gaskonstante	R	$8,31 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
Standard pressure Standaarddruk	p^{θ}	$1,013 \times 10^{5} \mathrm{~Pa}$
Molar gas volume at STP Molêre gasvolume by STD	V_{m}	$22,4 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$
Standard temperature Standaardtemperatuur	T^{\ominus}	273 K

TABLE 2: FORMULAE/TABEL 2: FORMULES

$\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$	$p V=n R T$
$n=\frac{m}{M}$	$n=\frac{N}{N_{A}}$
$n=\frac{V}{V_{m}}$	$c=\frac{n}{V} \quad$ OR/OF $\quad c=\frac{m}{M V}$

TABLE 3: THE PERIODIC TABLE OF ELEMENTSITABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

