GAUTENG PROVINCE

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION
 JUNE 2017

GRADE 11

MEMORANDUM

10 pages

MEMORANDUM	Mathematics Paper 2 GRADE 11

GAUTENG DEPARTMENT OF EDUCATION

 PROVINCIAL EXAMINATION
MATHEMATICS Paper 2

MEMORANDUM

INSTRUCTIONS AND INFORMATION

A - Accuracy
CA - Consistent Accuracy
S - Statement
R - Reason
SR - Statement / Reason

NOTE:

- If a candidate answered a question TWICE, mark only the first attempt.
- If a candidate CROSSED OUT an answer and did not redo it, mark the crossed out answer.
- Consistent accuracy applies to ALL aspects of the memorandum. Stop marking at the second calculation error.
- Assuming values/answers in order to solve a problem is UNACCEPTABLE.

MEMORANDUM

QUESTION 1			MARKS: 25	
1.1	$\begin{aligned} & M_{\mathrm{MR}}=\frac{6-0}{4-0} \\ & M_{\mathrm{MR}}=\frac{6}{4}=\frac{3}{2} \\ & \text { equation of line } \mathrm{MR} \text { is: } y=\frac{3}{2} x \end{aligned}$	\checkmark sub. into the gradient formula \checkmark gradient of line MR \checkmark equation of line MR	(3)	
1.2	$\begin{aligned} y-5 x+14 & =0 \\ y & =5 x-14 \end{aligned}$ MS \|	PR $\quad \therefore m_{\mathrm{PR}}=5$ equation of line PR: $\begin{aligned} y-y_{1} & =m\left(x-x_{1}\right) \\ y-4 & =5(x+2) \\ y & =5 x+14 \end{aligned}$	$\checkmark m_{\mathrm{MS}}=5$ $\checkmark m_{\mathrm{PR}}=5$ \checkmark sub. $(-2 ; 4)$ \checkmark answer	(4)
1.3	$\begin{aligned} m_{\mathrm{PR}} & =5 \\ \therefore \tan \alpha & =5 \\ \alpha & =78,69^{\mathrm{a}} \\ m_{\mathrm{MR}} & =\frac{3}{2} \\ \tan \beta & =\frac{3}{2} \\ \beta & =56,31^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & \checkmark \tan \alpha=5 \\ & \checkmark 78,69^{\circ} \end{aligned}$ $\begin{aligned} & \checkmark 56,31^{a} \\ & \checkmark \therefore \theta=(\alpha-\beta) . .(\text { sum of } \end{aligned}$ angles of Δ) $\sqrt{22,38^{\circ}}$	(5)	
1.4	$\begin{gathered} y=\frac{3}{2} x \text { and } y=5 x+14 \\ 5 x+14=\frac{3}{2} x \\ 10 x+28=3 x \\ 7 x=-28 \\ x=-4 \\ y=-6 \\ \mathrm{R}(-4 ;-6) \end{gathered}$	$\begin{aligned} & \checkmark \text { equating } 5 x+14=\frac{3}{2} x \\ & \checkmark 7 x=-28 \\ & \checkmark x=-4 \\ & \checkmark y=-6 \end{aligned}$	(4)	

MEMORANDUM

1.5	$\begin{aligned} & d_{\mathrm{MR}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\ &=\sqrt{(4+4)^{2}+(6+6)^{2}} \\ &=\sqrt{64+144} \\ &=4 \sqrt{13} \\ & \end{aligned}$	\checkmark sub. into dist. formula \checkmark answer	(2)
1.6	$\begin{aligned} & \begin{array}{l} d_{\mathrm{PR}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\ \quad=\sqrt{(-4+2)^{2}+(-6-4)^{2}} \\ \quad=\sqrt{104} \text { or } 2 \sqrt{26} \\ \text { Area of } \triangle \mathrm{PMR} \\ =\frac{1}{2} \text { PR. MR. } \sin \theta \\ =\frac{1}{2} 2 \sqrt{26} \cdot 4 \sqrt{13} \cdot \sin 22,38^{\mathrm{a}} \text { OR } \\ \frac{1}{2} \sqrt{104} \cdot 4 \sqrt{13} \cdot \sin 22,38^{\mathrm{a}} \\ =28 \text { units }^{2} \end{array} \end{aligned}$	\checkmark sub. into dist. formula $\checkmark \sqrt{104}$ OR $2 \sqrt{26}$ $\begin{aligned} & \checkmark \frac{1}{2} 2 \sqrt{26} \cdot 4 \sqrt{13} \cdot \sin 22,38^{\mathrm{a}} \text { OR } \\ & \frac{1}{2} \sqrt{104} \cdot 4 \sqrt{13} \cdot \sin 22,38^{\mathrm{c}} \\ & (\checkmark \text { rounding-off) answer } \checkmark \end{aligned}$	(5)
1.7	$\mathrm{S}(2 ;-4)$	$\begin{aligned} & \checkmark x=2 \\ & \checkmark y=-4 \end{aligned}$	(2)

QUESTION 2

MARKS: 26

2.1	$\begin{aligned} & \quad y^{2}=r^{2}-x^{2} \\ & \therefore y^{2}=(25)^{2}-(-7)^{2} \\ & \therefore y^{2}=576 \\ & \therefore \quad y=-24 \\ & \therefore 14 \tan \theta=14\left(\frac{-24}{-7}\right) \\ & =48 \end{aligned}$		\checkmark diagram correct in correct quad. $\begin{aligned} & \checkmark y=-24 \\ & \checkmark \tan \theta=\frac{-24}{-7} \end{aligned}$ \checkmark answer	(4)
2.2	$\begin{aligned} & \frac{\cos \left(90^{\circ}+x\right) \cdot \sin \left(180^{\circ}+x\right)}{\tan 225^{\circ}-\cos ^{2}(-x)} \\ & =\frac{(-\sin x)(-\sin x)}{\tan 45^{\circ}-\cos ^{2} x} \\ & =\frac{\sin ^{2} x}{1-\cos ^{2} x} \\ & =\frac{\sin ^{2} x}{\sin ^{2} x} \\ & =1 \end{aligned}$		$\checkmark(-\sin x)(-\sin x)$ $\checkmark \tan 45^{\circ}$ $\checkmark \cos ^{2} x$ $\checkmark \tan 45^{\circ}=1$ $\checkmark 1-\cos ^{2} x=\sin ^{2} x$ \checkmark answer	(6)

MEMORANDUM

2.3	$\begin{aligned} & & 2 \cos 2 \theta & =-0,44 \\ & \therefore & \cos 2 \theta & =-0,22 \\ & \therefore & \text { Ref. angle } & =77,2909 \ldots \\ & & 2 \theta & =180^{\circ}-77,2909 \ldots{ }^{\circ}+k .360^{\circ} \\ & & \theta & =51,35^{\circ}+k .180, k \in Z \text { or } \\ & & 2 \theta & =180^{\circ}+77,2909 \ldots \ldots^{\circ}+k .360^{\circ} \\ & & \theta & =128,65^{\circ}+k .180^{\circ}, k \in Z \end{aligned}$	$\begin{aligned} & \checkmark \cos 2 \theta=-0,22 \\ & \checkmark 77,2909^{\circ} \\ & \checkmark \\ & 2 \theta=180^{\circ}-77,2909^{\circ}+k \cdot 360^{\circ} \\ & \checkmark \quad \theta=51,35^{\circ}+k \cdot 180, k \in Z \\ & \checkmark 2 \theta=180^{\circ}+77,2909^{\circ}+k \cdot 360^{\circ} \\ & \checkmark \\ & \therefore \theta=128,65^{\circ}+k \cdot 180^{\circ}, k \in Z \end{aligned}$	(6)
2.4	$\begin{aligned} & \therefore \text { LHS: } \frac{\tan \theta-\sin \theta}{1-\cos \theta} \\ & =\frac{\frac{\sin \theta}{\cos \theta}-\frac{\sin \theta}{1}}{1-\cos \theta} \\ & =\frac{\frac{\sin \theta-\sin \theta \cdot \cos \theta}{\cos \theta}}{1-\cos \theta} \\ & =\frac{\sin \theta(1-\cos \theta)}{\cos \theta} \times \frac{1}{1-\cos \theta} \\ & =\frac{\sin \theta}{\cos \theta} \\ & =\tan \theta \end{aligned}$	$\begin{aligned} & \checkmark \tan \theta=\frac{\sin \theta}{\cos \theta} \\ & \checkmark \frac{\sin \theta-\sin \theta \cdot \cos \theta}{\cos \theta} \\ & \checkmark \sin \theta(1-\cos \theta) \\ & \checkmark \times \frac{1}{1-\cos \theta} \\ & \checkmark \frac{\sin \theta}{\cos \theta}=\tan \theta \end{aligned}$	(5)
2.5	$\begin{aligned} & \alpha=90^{\circ}-\beta \\ & \therefore \begin{array}{l} \therefore \cos 20^{\circ} \\ \sin 70^{\circ} \end{array}-\frac{\sin \left(90^{\circ}-\beta\right)}{\sin \left(90^{\circ}-\beta\right)} \\ & \quad=\frac{\sin 70^{\circ}}{\sin 70^{\circ}}-1 \\ & =1-1 \\ & \quad=0 \end{aligned}$	$\begin{aligned} & \checkmark \cos 20^{\circ} \\ & \checkmark \sin \alpha=\sin \left(90^{\circ}-\beta\right) \\ & \checkmark \cos 20^{\circ}=\sin 70^{\circ} \\ & \checkmark 1-1 \\ & \checkmark \text { answer } \end{aligned}$	(5)

QUESTION 3		MARKS:14	
3.1		\checkmark y-intercepts of f \checkmark y-intercepts of g $\checkmark \checkmark$ both turning points of g \checkmark both x-intercepts of f \checkmark both turning points of f	(6)
3.2	2	$\checkmark \checkmark$ answer	(2)
3.3	$\begin{aligned} & \quad 2 \cos x+1=1-\sin x \\ & \therefore \quad \sin x=-2 \cos x \\ & \therefore \quad \tan x=-2 \\ & \therefore \text { Ref. angle }=63,4349 \ldots .^{\circ} \\ & \therefore \quad x=180^{\circ}-63,4349 \ldots .^{\circ}+k .180^{\circ} \\ & \therefore \quad x=116,57^{\circ}+k .180^{\circ} \text { with } k \in Z \\ & \therefore \quad x=-63,43^{\circ} \text { OR } 116,57^{\circ} \text { OR } 296,57^{\circ} \end{aligned}$	$\begin{array}{ll} \checkmark & \tan x=-2 \\ \checkmark & 63,4349^{\circ} \\ \checkmark & x=116,57^{\circ}+ \\ & k .180^{\circ} \text { with } k \in \mathrm{Z} \\ \checkmark & -63,43^{\circ} \\ \checkmark & 116,57^{\circ} \\ \checkmark & 296,57^{\circ} \end{array}$	(6)

MEMORANDUM	Mathematics Paper 2 GRADE 11

	QUESTION 4	MARKS: 13
4.1	Construction: Join PO and OR In $\triangle \mathrm{POQ}$ and $\Delta \mathrm{ROQ}$ 1) $O Q=O Q$..... common 2) $P O=O R$ \qquad radii 3) $\hat{\mathrm{Q}}_{1}=\hat{\mathrm{Q}}_{2}=90^{\circ}$.. given $\begin{gathered} \therefore \triangle P O Q \equiv \triangle R O Q \ldots 90^{\circ} H S \\ \therefore P Q=R Q \end{gathered}$	\checkmark construction (radii, OP and OR) $\checkmark \mathrm{SR}$ ie $(\mathrm{PO}=\mathrm{OR} \ldots .$. radii) $\checkmark \mathrm{S}$ ie $\left(\hat{\mathrm{Q}}_{1}=\hat{\mathrm{Q}}_{2}=90^{\circ}\right)$ \checkmark S R $\checkmark \mathrm{PQ}=\mathrm{RQ}$
4.2.1	$\hat{\mathrm{A}}_{1}=90^{\circ}$..line from centre to midpt. of chord $\hat{\mathrm{B}}=180^{\circ}-\left(\hat{\mathrm{O}}_{1}+\hat{\mathrm{A}}_{1}\right) \ldots$. sum of angles of a Δ $=50^{\circ}$	$\checkmark \text { S R }$ \checkmark answer (2)

MEMORANDUM

MEMORANDUM	Mathematics Paper 2 GRADE 11

	QUESTION 5	MARKS: 10
5.1	$\begin{aligned} & \hat{\mathrm{L}}=\hat{\mathrm{J}}_{1}=x \ldots \text { angles opp. }=\text { sides } \\ & \hat{\mathrm{N}}_{1}=\hat{\mathrm{L}}=x \ldots=\text { chords subtend }=\text { angles } \end{aligned}$	$\begin{align*} & \checkmark \mathrm{SR} \\ & \checkmark \mathrm{~S} \\ & \checkmark \mathrm{R} \tag{3} \end{align*}$
5.2	$\hat{\mathrm{M}}=\hat{\mathrm{J}}_{3}=y \ldots . . \ldots .$. angles opp. $=$ sides $\hat{\mathbf{K}}_{1}=\hat{\mathbf{M}}=y \ldots \ldots . .=$ chords subtend $=$ angles $\hat{\mathrm{Q}}_{2}=\hat{\mathrm{K}}_{1}+\hat{\mathrm{J}}_{1} \ldots$ ext. angle of Δ $=x+y$ $\hat{\mathrm{P}}_{2}=\hat{\mathrm{N}}_{1}+\hat{\mathrm{J}}_{3} \ldots$ ext. angle of Δ $=x+y$ $\begin{equation*} \therefore \quad \hat{\mathrm{Q}}_{2}=\hat{\mathrm{P}}_{2}=x+y \tag{4} \end{equation*}$	$\begin{aligned} & \checkmark S R \\ & \checkmark S R \end{aligned}$ $\checkmark \mathrm{SR}$ $\checkmark \mathrm{S} \mathrm{R}$
5.3	$\hat{\mathrm{P}}_{4}=\hat{\mathrm{P}}_{2} \ldots$. vert. opp. angles $\hat{\mathrm{Q}}_{4}=\hat{\mathrm{Q}}_{2} \ldots$. vert. opp. angles but $\hat{\mathrm{Q}}_{2}=\hat{\mathrm{P}}_{2} \ldots . . .$. .proved in Q5.2 $\therefore \quad \hat{\mathrm{P}}_{4}=\hat{\mathrm{Q}}_{4}$ $\therefore \mathrm{JQ}=\mathrm{JP}$. sides opp $=$ angles $\mathbf{O R}$ isos. Δ	$\begin{align*} & \checkmark \mathrm{S} \mathrm{R} \text { for } \hat{\mathrm{P}}_{4}=\hat{\mathrm{P}}_{2} \quad \text { OR } \\ & \hat{\mathrm{Q}}_{4}=\hat{\mathrm{Q}}_{2} \\ & \checkmark \hat{\mathrm{P}}_{4}=\hat{\mathrm{Q}}_{4} \\ & \checkmark \mathrm{R} \tag{3} \end{align*}$

MEMORANDUM	Mathematics Paper 2 GRADE 11

	QUESTION 6	MARKS: 12	
6.1	$\begin{aligned} & \hat{\mathrm{K}}_{2}=\hat{\mathrm{T}}_{1} \ldots \ldots . \text { angles opp. }=\text { sides } \mathbf{O R} \text { equal radii } \\ & \hat{\mathrm{T}}_{1}=\hat{\mathrm{C}}^{\ldots} \ldots \ldots . \text { angles in same segment } \\ & \therefore \quad \therefore \quad \hat{\mathrm{K}}_{2}=\hat{\mathrm{C}} \end{aligned}$	$\begin{aligned} & \checkmark S R \\ & \checkmark \hat{T}=\hat{C} \\ & \checkmark R \end{aligned}$	(3)
6.2	$\begin{aligned} \hat{\mathrm{T}}_{2} & =\hat{\mathrm{A}} \ldots . . . \text { angles opp. }=\text { sides } \text { OR equal radii } \\ \mathrm{P}_{2} & =\hat{\mathrm{T}}_{2}+\hat{\mathrm{A}} \ldots \text { ext. angle of } \Delta \\ & =2 \hat{\mathrm{~T}}_{2} \end{aligned}$ $\hat{\mathrm{K}}_{1}=\hat{\mathrm{P}}_{2}$ \qquad angles in same segment $\hat{\mathrm{K}}_{1}=2 \hat{\mathrm{~T}}_{2}$	\checkmark SR \checkmark SR $\begin{aligned} & \checkmark \hat{\mathrm{K}}_{1}=\hat{\mathrm{P}}_{2} \\ & \checkmark \mathrm{R} \end{aligned}$	(4)
6.3	$\begin{aligned} & \hat{\mathrm{P}}_{4}=2 \hat{\mathrm{~T}} \ldots \ldots \ldots . \quad \begin{array}{l} \text { angle at centre }=\text { twice angle at } \\ \text { circumference } \end{array} \\ & \hat{\mathrm{T}}=\hat{\mathrm{T}}_{1}+\hat{\mathrm{T}}_{2} \\ & \hat{\mathrm{~T}}_{1}=\hat{\mathrm{C}} \ldots \ldots \ldots \text { angles in same segment } \\ & \hat{\mathrm{T}}_{2} \end{aligned}=\frac{1}{2} \hat{\mathrm{~K}}_{1} \ldots . . \text { proved in Q6.2 } \quad \begin{aligned} \hat{\mathrm{P}}_{4} & =2\left(\hat{\mathrm{C}}+\frac{1}{2} \hat{\mathrm{~K}}_{1}\right) \\ & \left.=2 \hat{\mathrm{C}}+\hat{\mathrm{K}}_{1}\right) \end{aligned}$	$\begin{aligned} & \checkmark \hat{\mathrm{P}}_{4}=2 \hat{\mathrm{~T}} \\ & \checkmark \mathrm{R} \\ & \checkmark \mathrm{~S} \mathrm{R} \\ & \checkmark \hat{\mathrm{~T}}_{2}=\frac{1}{2} \hat{\mathrm{~K}}_{1} \\ & \checkmark \hat{\mathrm{P}}_{4}=2\left(\hat{\mathrm{C}}+\frac{1}{2} \hat{\mathrm{~K}}_{1}\right) \end{aligned}$	(5)

