

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION JUNE 2016

GRADE 11

MATHEMATICS (Second Paper)

TIME: 2 hours

MARKS: 100

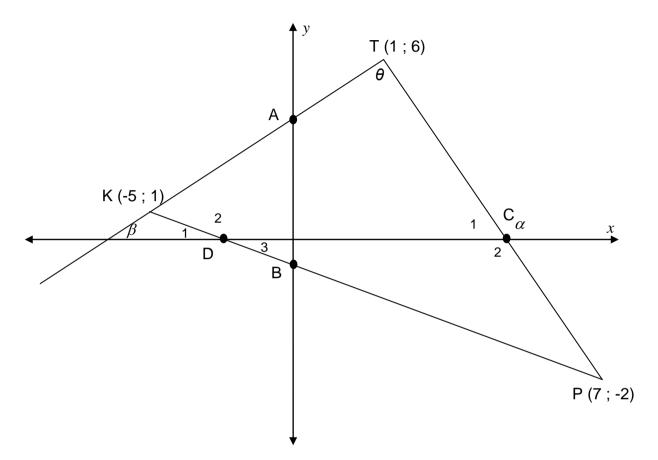
9 pages + 2 diagram sheets

2

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION

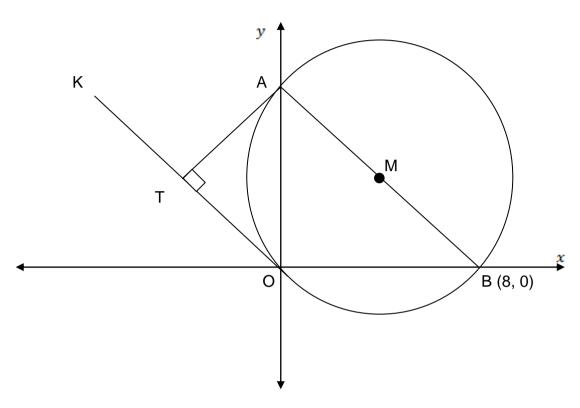
MATHEMATICS (Second Paper)

TIME: 2 hours


MARKS: 100

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.


- 1. This question paper consists of **7** questions. Answer ALL the questions.
- 2. Number your answers according to the numbering of the questions in the question paper.
- 3. Use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 4. Round-off the final answer correct to 2 decimal places, unless instructed otherwise.
- 5. Show ALL calculations, diagrams, graphs, etc. that you have used to determine your answers.
- 6. Answers only will not necessarily be awarded full marks.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Reasons must accompany statements made in Questions 5, 6 and 7.
- 9. It is in your interest to write legibly (in blue ink) and present all answers neatly and logically.
- 10. Use the diagram sheets on Pages 10 and 11 for additional constructions and labelling . (SUBMIT these sheets with your ANSWER BOOK.)

In the diagram below, K(-5; 1), P(7; -2) and T(1; 6) are the vertices of Δ KTP. A and B are points on the *y*-axis and C and D are points on the *x*-axis.

1.4	Calculate the size of KTP.	(6) [16]
1.3	Calculate the length of AB.	(4)
1.2	Determine the equation of line KP in the form $y = mx + c$.	(3)
1.1	Calculate the length of KT. (Leave the answer in simplest surd form.)	(3)

In the diagram below, the circle with centre M passes through the origin. AB is the diameter of the circle with B(8; 0).

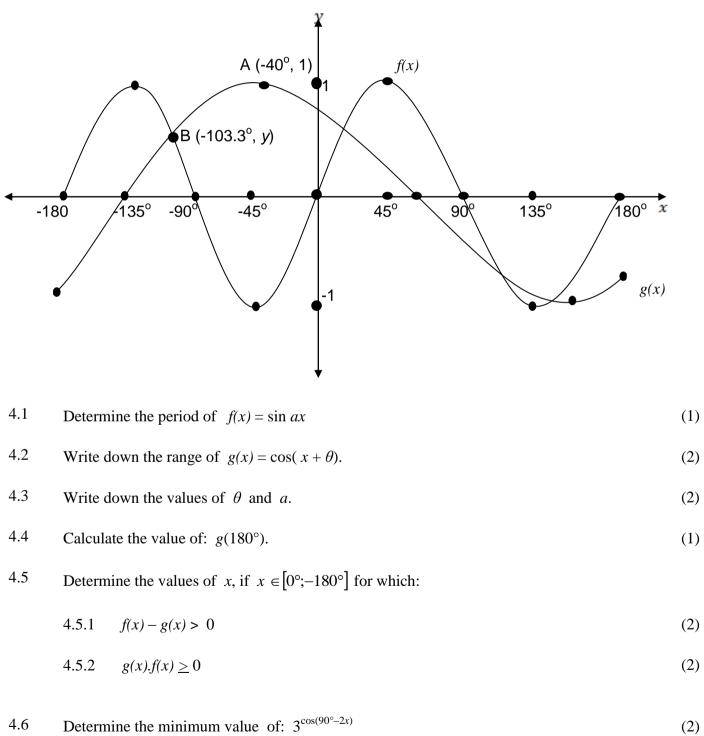
2.1	Calculate the <i>x</i> -co-ordinate of Point M.	(4)
2.2	Calculate the co-ordinates of Point A, the other <i>y</i> -intercept of the circle with centre $M(4; 2)$.	(3)
2.3	Determine the equation of the line OK which is parallel to AB.	(3)
2.4	Determine the <i>x</i> -co-ordinate of T which lies on line OK, such that AT is the shortest distance from A to line OK.	(4)

[14]

- 3.1 If $13\sin \alpha = -5$ and $\tan \alpha > 0$, use a diagram to evaluate: $3\cos \alpha$. (5)
- 3.2 Simplify the following expressions **without** the use of a calculator.

3.2.1
$$\frac{\sin(\theta - 180^{\circ}) \cdot \tan(360^{\circ} - \theta) \cdot \sin(90^{\circ} - \theta)}{\cos^{2}(\theta + 180^{\circ})}$$
(6)

3.2.2
$$\frac{\sin 210^{\circ} .\cos 400^{\circ}}{\sin (-50^{\circ}) .\cos 120^{\circ}}$$
 (6)


3.3 If $(4 \theta - 8) \sin 30^\circ = (\theta^3 - 8)$ and $(\theta^2 + 2\theta + 4) = 2$, determine the value of $\tan 240^\circ$ without the use of a calculator. (5)

3.4 3.4.1 Prove that :
$$\frac{1}{\tan \alpha} (\sin \alpha \tan \alpha + \cos \alpha) = \frac{1}{\sin \alpha}$$
 (4)

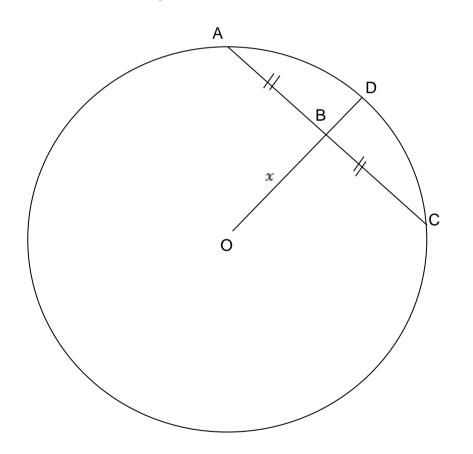
3.4.2 Determine for which value(s) of α is: $\frac{1}{\tan \alpha} (\sin \alpha \tan \alpha + \cos \alpha) \text{ undefined for } \alpha \in [0^{\circ}; 360^{\circ}]. \qquad (2)$ [28]

The sketch below shows the graphs of:

$$f(x) = \sin ax$$
 and $g(x) = \cos(x + \theta)$, for $x \in [-180^\circ; 180^\circ]$

^[12]

STATEMENTS AND REASONS ARE REQUIRED WHEN ANSWERING QUESTIONS 5 , 6 AND 7.

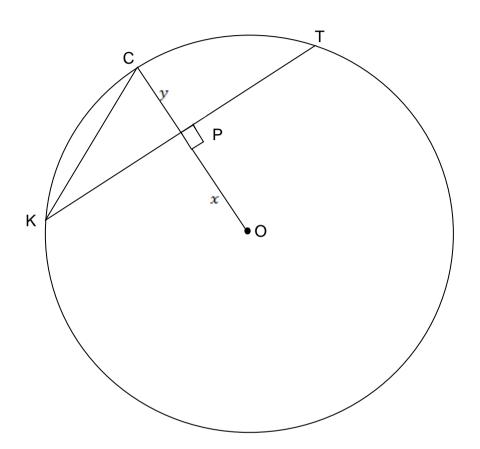

Diagram sheets are provided on Pages 10 and 11 to assist you.

QUESTION 5

5.1 Complete:

The line drawn through the centre of a circle to the midpoint of a chord is ...

5.2 In the diagram below, AC is a chord of the circle with centre O. AC = 48 cm, BD = 16 cm and OB = x. B is the midpoint of line AC.


5.2.1	Calculate the length of AD.	(2)

5.2.2	Determine the length of	OD in terms of x .	(1)

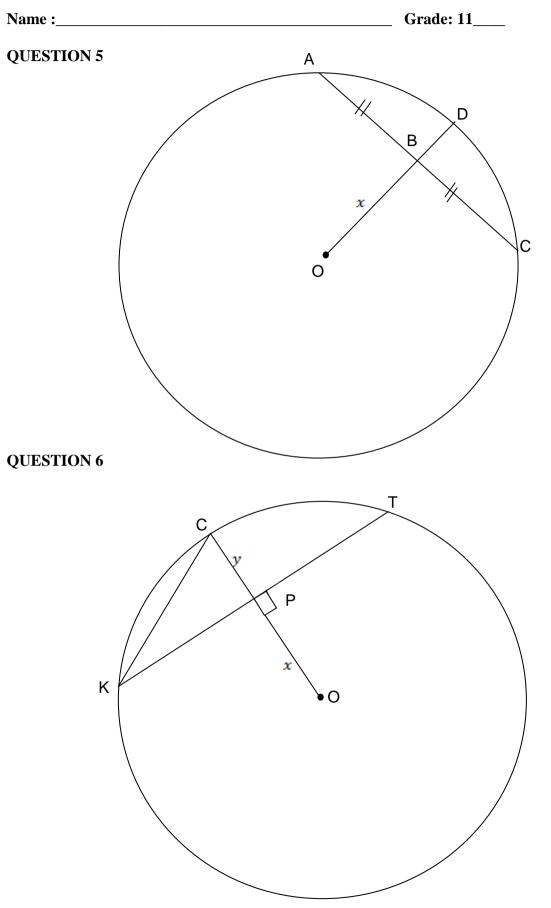
- 5.2.3 Determine the numerical value of x. (4)
 - [8]

(1)

In the diagram below, KT is a chord of Circle O. OC is drawn perpendicular to KT and cuts KT at P. OP = x and PC = y.

6.1	Determine PT in terms of KT.	(2)
6.2	Prove that: $KC^2 = 2xy + 2y^2$	(6) [8]

In the accompanying figure, V and U are points on the smaller circle with centre S. T and R are the points of intersection of the two circles. PR and TQ are chords of the larger circle.

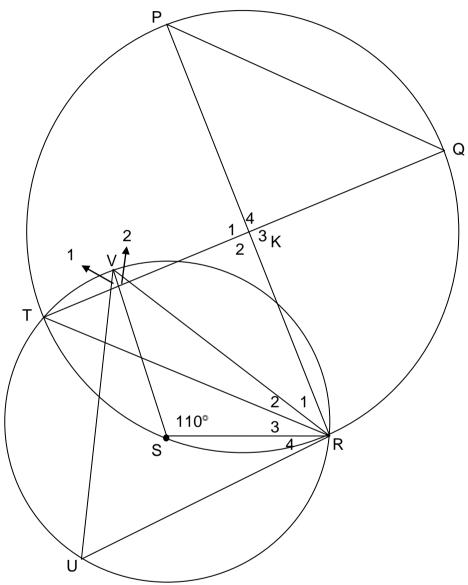

 $\hat{VSR} = 110^\circ$; $\hat{R}_3 = 20^\circ$ and $\hat{R}_1 = 30^\circ$ Ρ Q 4 ³K 2 ≰ 2 1 Т Ź 1 110° 3 R 4 S U

Calculate:

7.1	Û	(2)
7.2	\hat{V}_2	(3)
7.3	Ŷ	(3)
7.4	Given that $\hat{K}_2 = 90^\circ$, calculate \hat{P} .	(4)
7.5	Prove that TR//PQ.	(2) [14]

TOTAL: 100

DIAGRAM SHEET 1



10

Grade 11

DIAGRAM SHEET 2

