GAUTENG PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

GAUTENG DEPARTMENT OF EDUCATION

PROVINCIAL EXAMINATION

2016

GRADE 11

MEMORANDUM

11 pages

MEMORANDUM	Mathematics P2

GAUTENG DEPARTMENT OF EDUCATION

PROVINCIAL EXAMINATION

MATHEMATICS

(Second Paper)

INFORMATION:

A - Accuracy
C.A. - Continued Accuracy

S $\quad-\quad$ Statement
R - Reason
S and R - Statement and Reason

	QUESTION 1	MARKS : 16
1.1	$\begin{aligned} \mathrm{KT} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\ & =\sqrt{(-5-1)^{2}+(1-6)^{2}} \\ & =\sqrt{61} \end{aligned}$	\checkmark Distance formula \checkmark subst. in corr. formula \checkmark answer [2/3 if answer not in surd form]
1.2	$\begin{aligned} m_{K P} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & =-\frac{1}{4} \end{aligned}$ $\begin{aligned} \left(y-y_{1}\right) & =m\left(x-x_{1}\right) \\ (y-1) & =-\frac{1}{4}(x-(-5)) \\ y & =-\frac{1}{4} x-\frac{1}{4} \end{aligned}$ OR $\begin{aligned} m_{K P} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & =-\frac{1}{4} \end{aligned}$ $\begin{aligned} (y-(-2)) & =-\frac{1}{4}(x-7) \\ y & =-\frac{1}{4} x-\frac{1}{4} \end{aligned}$	\checkmark answer $m_{K P}$ \checkmark subst. $(-5 ; 1)$ into str. line eq. \checkmark answer (C.A) OR \checkmark answer $m_{K P}$ \checkmark subst. (7;-2) into str. line eq. \checkmark answer (C.A)
1.3	$\begin{aligned} & m_{K T}=\frac{6-1}{1-(-5)} \\ &=\frac{5}{6} \\ &(y-6)=\frac{5}{6}(x-1) \\ & y=\frac{5}{6} x+5 \frac{1}{6} \\ & \mathrm{~A}\left(0 ; 5 \frac{1}{6}\right) \\ & \mathrm{B}\left(0 ;-\frac{1}{4}\right) \\ & \mathrm{AB}=5 \frac{1}{6}+\frac{1}{4} \\ &=5 \frac{5}{12} \quad \text { OR } 5,42 \quad \text { OR } \frac{65}{12} \end{aligned}$	\checkmark answer $m_{K T}$ (A) \checkmark eq. of Line KT. (A) OR y-int of line KT. \checkmark add of y co-ord. of A and B \checkmark answer (A)

1.4	$\begin{aligned} & \tan \beta=m_{K T} \\ & \tan \beta=\frac{5}{6} \\ & \beta=39,81^{\circ} \\ & m_{P T}=-\frac{4}{3} \\ & \tan \alpha=-\frac{4}{3} \\ & \begin{array}{c} \alpha=180^{\circ}-53,13^{\circ} \\ =126,87^{\circ} \\ \theta=\alpha-\beta \ldots e x t . \quad \text { of } \Delta \\ =126,87^{\circ}-39,81^{\circ} \\ =87,06^{\circ} \end{array} \end{aligned}$ ANY other valid solution	$\begin{align*} & \checkmark \tan \beta=\frac{5}{6} \\ & \checkmark \beta=39,81^{\circ} \\ & \checkmark \\ & \tan \alpha=-\frac{4}{3} \\ & \checkmark \alpha=126,87^{\circ} \\ & \checkmark 126,87^{\circ}-39,81^{\circ} \\ & \checkmark \text { answer } \\ & \text { (PENALISE once for rounding } \\ & \text { off, either } \alpha \text { or } \beta \text {) } \tag{6} \end{align*}$
	QUESTION 2	MARKS : 14
2.1	Let M ($x ; y$) $\begin{aligned} & O M^{2}=M B^{2} \ldots \ldots \text { radii) } \\ & (0-x)^{2}+(0-y)^{2} \\ & =(8-x)^{2}+(0-y)^{2} \\ & x^{2}+y^{2} \\ & =64-16 x+x^{2}+y^{2} \\ & x \end{aligned}$	$\checkmark O M^{2}=M B^{2}$ \checkmark corr. Subst. in dist. formula \checkmark simplification (C.A) \checkmark answer Answer only 0
2.2	$\begin{gathered} \mathrm{A}(x ; y) \\ x=0 \\ \frac{0+y}{2}=2 \\ y=4 \\ \mathrm{~A}(0 ; 4) \end{gathered}$	\checkmark subst. in midpt. formula $\checkmark y=0$ \checkmark co-ord. of A [2/3 if not in co-ordinate form]
2.3	$m_{A B}=-\frac{1}{2}$ Eq. of line OK: $\begin{aligned} y-y_{1} & =m\left(x-x_{1}\right) \\ y-0 & =-\frac{1}{2}(x-0) \\ y & =-\frac{1}{2} x \end{aligned}$	$\checkmark m_{A B}$ \checkmark corr. subst. in str. line formula \checkmark answer (C.A)

2.4	$\begin{align*} & \text { Let } \mathrm{T}(x ; y) \\ & m_{A T}=\frac{4-y}{-x} \\ & \frac{4-y}{-x} \times-\frac{1}{2}=-1 \ldots \ldots . \perp \text { lines } \\ & y=2 x+4 \ldots(1) \tag{1} \end{align*}$ Eq. of line OK $\begin{gather*} y=-\frac{1}{2} x \tag{2}\\ 2 x+4=-\frac{1}{2} x \\ x=-\frac{8}{5} \tag{4} \end{gather*}$ Any other valid method	$\begin{aligned} & \checkmark \frac{4-y}{-x} \times-\frac{1}{2}=-1 \\ & \checkmark y=2 x+4 \end{aligned}$ \checkmark equating (1) and (2) \checkmark answer (C.A)
	QUESTION 3	MARKS 28
3.1	$\begin{aligned} 13 \sin \alpha & =-5 \\ \sin \alpha & =-\frac{5}{13} \end{aligned}$ $\begin{aligned} x & =-\sqrt{13^{2}-(-5)^{2}} \\ & =-12 \end{aligned}$ $3 \cos \alpha$ $\begin{aligned} & =3\left(-\frac{12}{13}\right) \\ & =-\frac{36}{13} \end{aligned}$	$\checkmark \sin \alpha=-\frac{5}{13}$ \checkmark cartesian plane with terminal arm in 3 rd quad. $\checkmark x=-12$ \checkmark subst. $\cos \alpha=-\frac{12}{13}$

3.2.1	$\begin{aligned} & \frac{\sin \left(\theta-180^{\circ}\right) \cdot \tan \left(360^{\circ}-\theta\right) \cdot \sin \left(90^{\circ}-\theta\right)}{\cos ^{2}\left(\theta+180^{\circ}\right)} \\ & =\frac{-\sin \theta \times-\tan \theta \times \cos \theta}{\cos ^{2} \theta} \\ & =\frac{-\sin \theta \times-\frac{\sin \theta}{\cos \theta} \times \cos \theta}{\cos ^{2} \theta} \\ & =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\ & =\tan ^{2} \theta \end{aligned}$	$\checkmark-\sin \theta ; \quad \checkmark-\tan \theta ; \checkmark \cos \theta$; $\checkmark \cos ^{2} \theta$ $\checkmark-\tan \theta=-\frac{\sin \theta}{\cos \theta}$ $\checkmark \frac{\sin ^{2} \theta}{\cos ^{2} \theta}$ or $\tan ^{2} \theta$
3.2.2	$\begin{align*} & \frac{\sin 210^{\circ} \cdot \cos 400^{\circ}}{\sin \left(-50^{\circ}\right) \times \cos 120^{\circ}} \tag{6}\\ & =\frac{\sin \left(180^{\circ}+30^{\circ}\right) \times \cos \left(360^{\circ}+40^{\circ}\right)}{-\sin 50^{\circ} \times \cos \left(180^{\circ}-60^{\circ}\right)} \\ & =\frac{-\sin 30^{\circ} \times \cos 40^{\circ}}{-\cos 40^{\circ} \times-\cos 60^{\circ}} \\ & =-1 \end{align*}$	$\begin{align*} & \checkmark-\sin 50^{\circ} \\ & \checkmark-\sin 30^{\circ} ; \\ & \checkmark \cos 40^{\circ} ; \\ & \checkmark-\cos 40^{\circ} \text { or } \cos 40^{\circ}=\sin 50^{\circ} \\ & \checkmark-\cos 60^{\circ} \\ & \checkmark \text { answer } \tag{6} \end{align*}$
3.3	$\begin{aligned} & (4 \theta-8) \sin 30^{\circ}=\theta^{3}-8 \\ & (4 \theta-8) \sin 30^{\circ}=(\theta-2)\left(\theta^{2}+2 \theta+4\right) \\ & (4 \theta-8) \sin 30^{\circ}=(\theta-2)(2) \\ & \sin 30^{\circ}=\frac{(\theta-2)(2)}{(4 \theta-8)} \\ & \quad=\frac{(\theta-2)(2)}{4(\theta-2)} \\ & \quad=\frac{1}{2} \end{aligned}$	\checkmark factorization \checkmark factorization of denominator \checkmark answer

	$\begin{aligned} \tan 240^{\circ} & =\tan \left(180^{\circ}+60^{\circ}\right) \\ & =\tan 60^{\circ} \\ & =\sqrt{3} \end{aligned}$	$\checkmark \tan 60^{\circ}$ \checkmark answer Full marks if $\tan 60^{\circ}=\sqrt{3}$ or Show sketch to determine sol. Answer only max 1 mark(surd form)
3.4.1	$\text { L.H.S: } \begin{align*} & \frac{1}{\tan x}(\sin \alpha \tan \alpha+\cos \alpha) \\ &=\sin \alpha+\frac{\cos \alpha}{\tan \alpha} \\ &=\sin \alpha+\frac{\frac{\cos \alpha}{\frac{\sin \alpha}{\cos \alpha}}}{} \\ &=\sin \alpha+\frac{\cos ^{2} \alpha}{\sin \alpha} \\ &= \frac{\sin ^{2} \alpha+\cos ^{2} \alpha}{\sin \alpha} \tag{4}\\ &=\frac{1}{\sin \alpha}=\text { R.H.S } \end{align*}$ Any other valid method	$\begin{aligned} & \checkmark \sin \alpha+\frac{\cos \alpha}{\tan \alpha} \\ & \checkmark \text { subst. } \tan \alpha=\frac{\sin \alpha}{\cos \alpha} \\ & \checkmark \frac{\cos ^{2} \alpha}{\sin \alpha} \\ & \checkmark \frac{\sin ^{2} \alpha+\cos ^{2} \alpha}{\sin \alpha} \end{aligned}$
3.4.2	$\alpha=\left\{0^{\circ} ; 90^{\circ} ; 180 ; 270^{\circ} ; 360^{\circ}\right\}$	$\begin{align*} & \checkmark 0^{\circ} ; 180^{\circ} ; 360^{\circ} \\ & \checkmark 90^{\circ} ; 270^{\circ} \tag{2} \end{align*}$

	QUESTION 4	MARKS 12
4.1	180°	\checkmark answer
4.2	$y \in[-1 ; 1]$ OR $-1 \leq y \leq 1, y \in \mathrm{R}$	$\checkmark-1 ; 1$ \checkmark corr. brackets OR $\checkmark-1 ; 1$ \checkmark corr. inequalities
4.3	$\begin{aligned} & \theta=40^{\circ} \\ & a=2 \end{aligned}$	$\begin{aligned} & \checkmark 40^{\circ} \\ & \checkmark 2 \end{aligned}$
4.4	$\mathrm{g}\left(180^{\circ}\right)=-0,77$	\checkmark answer (C.A)
4.5.1	$\begin{aligned} & f(x)-g(x)>0 \\ & f(x)>g(x) \\ & -180^{\circ} \leq x<-103,3^{\circ} \text { OR } \\ & {\left[-180^{\circ} ;-103,3^{\circ}\right)} \end{aligned}$	$\checkmark-180^{\circ} ;-103,3^{\circ}$ \checkmark corr. inequality OR corr. bracket OR $\left(16,7^{\circ} ; 130^{\circ}\right)$ or $\left(136,7^{\circ} ; 180^{\circ}\right]$
		(2)
4.5.2	$\begin{aligned} & g(x) \cdot f(x) \geq 0 \\ & {\left[-130^{\circ} ;-90^{\circ}\right] \text { OR }} \\ & -130^{\circ} \leq x \leq-90^{\circ} \end{aligned}$	$\checkmark\left[-130^{\circ} ;-90^{\circ}\right]$ \checkmark corr brackets OR corr. inequalities $\left[0^{\circ} ; 50^{\circ}\right] \text { or }\left[90^{\circ} ; 180\right]$
4.6	$\begin{aligned} & 3^{\cos \left(90^{3}-2 x\right)} \\ & =3^{\sin 2 x} \\ & =3^{-1} \\ & \text { OR } \\ & =\frac{1}{3} \end{aligned}$	$\sqrt{ } 3^{\sin 2 x}$ \checkmark answer (2)

	QUESTION 5	MARKS 8	
5.1	is perpendicular to the chord	\checkmark answer	
5.2.1	$\begin{aligned} \mathrm{AD} & =\sqrt{A B^{2}+B D^{2}} \ldots \text { th. of pyth. } \\ & =\sqrt{24^{2}+16^{2}} \\ & =28,84 \mathrm{~cm} \end{aligned}$	\checkmark Subst. \checkmark answer	(1)
			(2)
5.2.2	$\mathrm{OD}=x+16$	\checkmark answer	
5.2.3	$\begin{aligned} & \mathrm{OC}^{2}=\mathrm{BC}^{2}+\mathrm{OB}^{2} \ldots \ldots . . \text { th. of pyth } \\ & O D^{2}=24^{2}+x^{2} \\ & (x+16)^{2}=24^{2}+x^{2} \\ & \\ & \begin{array}{c} x^{2}+32 x+256=576+x^{2} \\ 32 x=320 \\ x=10 \end{array} \end{aligned}$	$\mathrm{OC}^{2}=\mathrm{BC}^{2}+\mathrm{OB}^{2}$ $\mathrm{OC}=\mathrm{OD} . . .$. radii $\begin{aligned} & \checkmark(x+16)^{2} \\ & \checkmark 24^{2}+x^{2} \end{aligned}$ \checkmark simplification \checkmark answer	
	QUESTION 6	MARKS 8	
6.1	$\mathrm{PT}=\frac{1}{2} \mathrm{KT}$. line from centre \perp to ch.	$\begin{aligned} & \checkmark \mathrm{S} \\ & \checkmark \mathrm{R} \end{aligned}$	
6.2	$\begin{aligned} & K C^{2}=P C^{2}+K P^{2} \ldots . . . \text { th. of pyth. } \\ & \text { but } K P^{2}=O K^{2}-O P^{2} \ldots . . \text { th. of pyth. } \\ & K C^{2}=P C^{2}+O K^{2}-O P^{2} \\ & \quad \text { but } O K=O C \ldots . . \text { radii } \\ & \quad=P C^{2}+O C^{2}-(O C-P C)^{2} \backslash \\ & \quad=P C^{2}+O C^{2}-\left(O C^{2}-2 O C . P C+P C^{2}\right) \\ & \quad=2(O C . P C) \\ & \quad=2(x+y)(y) \\ & \quad=2 x y+2 y^{2} \end{aligned}$	\checkmark S $\checkmark K P^{2}=O K^{2}-O P^{2}$ \checkmark subst. $\mathrm{OK}=\mathrm{OC}$ \checkmark subst. $\mathrm{OP}=\mathrm{OC}-\mathrm{PC}$ \checkmark simplification \checkmark subst. for OC and PC	
			(6)

7.5	$\begin{aligned} & \hat{T}=45^{\circ} \\ & \widehat{T}=\widehat{Q}=45^{\circ} \\ & \therefore \mathrm{TR} / / \mathrm{PQ} \text { alt. } \mathrm{Ls}= \\ & \\ & \\ & \\ & \mathrm{TRP}=45^{\circ} \\ & \mathrm{TRP}=\widehat{\mathrm{P}}=45^{\circ} \\ & \therefore \mathrm{TR} / / \mathrm{PQ} \text { alt. }\llcorner\mathrm{s}= \end{aligned}$	$\begin{aligned} & \checkmark \hat{T}=45^{\circ} \\ & \checkmark \mathrm{R} \end{aligned}$ OR $\checkmark T \hat{R} P=\widehat{P}$ \checkmark R	

