

Basic Education

KwaZulu-Natal Department of Basic Education REPUBLIC OF SOUTH AFRICA

MATHEMATICS P2

COMMON TEST

JUNE 2015

NATIONAL SENIOR CERTIFICATE

GRADE 11

MARKS: 100

TIME: 2 hours

This question paper consists of 10 pages, an information sheet and Diagram Sheets.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. Answer ALL the questions.
- 2. Clearly show all calculations and diagrams that you have used in determining your answers.
- 3. You may use an approved scientific calculator (non-programmable and non-graphical).
- 4. If necessary round off answers to TWO decimal places, unless stated otherwise.
- 5. Answers only will not necessarily be awarded full marks.
- 6. Diagrams not necessarily drawn to scale.
- 7. Number the answers correctly according to the numbering system used in this question paper.
- 8. Write neatly and legible.

TO: THE CHIEF INVIGILATOR(S) OF ALL CENTRES OFFERING NATIONAL SENIOR CERTIFICATE – COMMON TEST JUNE 2015

GRADE 11: MATHEMATICS P2

ERRATA:

MATHEMATICS P2

ERROR	CORRECTION
Page 3	Page 3
Question 1:	Question 1:
1.1.7 in the form of $y = mx + x$	1.1.7 in the form of $y = mx + c$

OUESTION FIVE: PAGE 10

ERROR

CORRECTION

Kindly ensure that all candidates are informed of the Errata.

MR R.C. PENNISTON

SENIOR MANAGER

PROVINCIAL EXAMINATION ADMINISTRATION

12/6/201S

...Together moving South Africa forward through quality education and skills development

DR 2 3 10€

()

-2.5

. 5 .

QUESTION ONE

1.1 In the diagram below A(0;8), B(8;2), C(2;-6) and D (x; y) are the vertices of a parallelogram. M is the midpoint of AC. $\triangle B = \theta$.

- 1.1.1 Calculate the lengths of AB and BC. (4)
- 1.1.2 Determine the coordinates of M. (3)
- 1.1.3 Prove that BM is perpendicular to AC. (4)
- 1.1.4 Prove that $A\hat{B}C = 90^{\circ}$ (4)
- 1.1.5 What type of triangle is $\triangle ABC$? (2)
- 1.1.6 Determine the area of \triangle ABC. (2)
- 1.1.7 Determine the equation of BM in the form y = mx + x. (3)
- 1.1.8 Calculate the size of angle θ . (4)
- 1.1.9 Determine the coordinates of D. (2)
- 1.2 Prove that the point (-4;11) lies on the line 3x + 4y = 32 (3)
- 1.3 Given the points P(6;5); Q(3;2); R (2m; m+4) and T $(\frac{5}{2}; \frac{1}{2})$. Calculate the value of m if PQ is parallel to RT. (4)

Copyright reserved

In the diagram below P is a point (-3;0) and T is (2a; 0). The inclination of the line PR is 108.4° and R is the y-intercept of PR.

Calculate:

1.4.2 the equation of PR in the form
$$y = mx + c$$
. (2)

1.4.4 If T(2a; 0); Q(a; b) and R lie on the same straight line.

Prove that
$$b = \frac{-9}{2}$$
 (4)

[45]

QUESTION TWO

- 2.1 Complete the following statement:

 The line drawn from the centre of a circle, perpendicular to a chord ______. (2)
- In the diagram BOM is a diameter of a circle with centre O. OD is perpendicular to the chord XY. OY=12.5 cm and XY=24 cm.

Calculate the lengths of:

[10]

QUESTION THREE

3.1 Complete the statement:

The angle subtended by an arc at the centre of the circle is ______. (2)

3.2 In the diagram A, B, C and D are points on the circle with centre O. $O\hat{B}C = 40^{\circ}$. BD = DC.

Calculate, with reasons, the value of:

3.2.1 BÂC.

(4)

3.2.2 BDC.

(2)

3.2.3 DĈB.

(2)

[10]

QUESTION FOUR

4.1 In the diagram below, O is the centre of the circle. Use the diagram to prove the theorem which states that : If PQRS is a cyclic quadrilateral then $P\hat{Q}R + P\hat{S}R = 180^{\circ}$. (6)

4.2 Complete this statement:

The angle between a tangent to a circle and a chord is ______. (2)

4.3 In the diagram below, AOD is a diameter of the circle and EDF is a tangent to the circle at D.

 $\hat{ADB} = 62^{\circ}$ and BC = CD.

Calculate, with reasons, the numerical value of:

4.3.1 BĈD.

(4)

4.3.2 CDF.

(4)

4.4 In the diagram, A, B and C are points on the circumference of a circle. PCT is a tangent to a circle at C and also parallel to AB.

Prove that AC = BC

(5)

[21]

QUESTION FIVE

In the diagram below, PQRT is a cyclic quadrilateral. PB is a tangent. RQB is a straight line. PT // BQR.

PT = QT and $\hat{P}_2 = x$.

5.1 Write down, with reason, \hat{R} in terms of x. (2)

5.2 Write down, with reasons, FIVE other angles each equal to x. (10)

5.3 Prove that QP = BP (2)

[14]

TOTAL: 100

INFORMATION SHEET: MATHEMATICS INLIGTINGSBLAD: WISKUNDE

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$
 $A = P(1 - ni)$ $A = P(1 - i)^n$

$$A = P(1 - ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$\sum_{i=1}^{n} 1 = n$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$T_n = a + (n-1)a$$

$$\sum_{i=1}^{n} 1 = n \qquad \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad T_n = a + (n-1)d \qquad S_n = \frac{n}{2} (2a + (n-1)d)$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$r \neq 1$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
; $r \neq 1$ $S_\infty = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1 + i)^{-n}]}{t}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \text{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan \theta$$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ $area \triangle ABC = \frac{1}{2}ab \cdot \sin C$ $\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$ $\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$

$$\cos(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$
$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$=b^2+c^2-2bc.\cos A$$

$$area \, \Delta ABC = \frac{1}{2} ab. \sin C$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$(x; y) \rightarrow (x \cos \theta + y \sin \theta; y \cos \theta - x \sin \theta)$$

$$(x; y) \rightarrow (x\cos\theta - y\sin\theta; y\cos\theta + x\sin\theta)$$

$$\overline{x} = \frac{\sum fx}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

DIAGRAM SHEETS

Question 2.2

Question 3.2

Question 4.1

Question 4.3

Question 4.4

Question 5

