

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION JUNE 2017

GRADE 11

MATHEMATICS PAPER 1

MEMORANDUM

11 pages

MEN	/OR/	ANDI	JM

GRADE 11

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION

MATHEMATICS (Paper 1)

MEMORANDUM

INFORMATION

A – Accuracy

CA – Continued Accuracy

NOTE:

- If a candidate answered a question TWICE, mark only the first attempt.
- If a candidate CROSSED out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking memorandum.
- Assuming values/answers in order to solve a problem is UNACCEPTABLE.

MEMORANDUM

GRADE 11

	QUESTION 1	MARKS: 19
1.1.1	$x^{2} - 2x = 15$ $x^{2} - 2x - 15 = 0$ (x - 5)(x + 3) = 0 x = 5 or x = -3	 ✓ std. form ✓ correct factors ✓ both solutions (3)
1.1.2	$4x^{2} - x - 5 < 0$ $(4x - 5)(x + 1) < 0$ $+ -1 - 1^{1/4}$ $-1 < x < 1\frac{1}{4}$	 ✓ factors ✓ critical values ✓ correct inequality
1.1.3	$\sqrt{2x - 1} + 2 = x$ $(\sqrt{2x - 1})^2 = (x - 2)^2$ $2x - 1 = x^2 - 4x + 4$ $0 = x^2 - 6x + 5$ $0 = (x - 5)(x - 1)$ $x = 5 \text{ or } x = 1$ Test: $x = 5$ only	 ✓ squaring both sides ✓ std. form ✓ factors ✓ both solutions ✓ accepting x = 5
1.1.4	$2x^{\frac{2}{3}} - 8 = 0$ $2x^{\frac{2}{3}} = 8$ $x^{\frac{2}{3}} = 4$ $(x^{\frac{2}{3}})^{\frac{3}{2}} = \pm (4)^{\frac{3}{2}}$ $x = \pm 2^{3} \text{ OR}$ $x = \pm 8$ OR $x^{\frac{2}{3}} = 4$ $(\sqrt[3]{x^{2}})^{3} = (4)^{3}$ $x^{2} = 64$ $x = \pm 8$	✓ $x^{\frac{2}{3}} = 4$ ✓ raising both sides to the power $\frac{3}{2}$ ✓ $x = \pm 2^3$ OR $x = \pm 8$ OR ✓ $x^{\frac{2}{3}} = 4$ ✓ raising both sides to the power of 3 ✓ $x = \pm 2^3$ OR $x = \pm 8$ (3)

MEMORANDUM MATHEMATICS (Paper 1) GRADE 11

	a + b + c = 0 b = -a - c $ax^{2} + bx + c = 0$	$\checkmark b = -a - c$
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ = $\frac{-(-a-c) \pm \sqrt{(-a-c)^2 - 4ac}}{2a}$ = $\frac{a+c \pm \sqrt{a^2 + 2ac + c^2 - 4ac}}{2a}$	✓ sub. in corr. formula
1.2	$=\frac{a+c \pm \sqrt{a^2-2ac+c^2}}{2a}$	✓ simplification to $\sqrt{a^2 - 2ac + c^2}$
	$=\frac{a+c \pm \sqrt{(a-c)^2}}{2a}$	$\checkmark (a-c)^2$
	$= \frac{a+c \pm (a-c)}{2a}$ $\therefore x = 1 \text{ or } x = \frac{c}{a}$	$\checkmark x = 1 \tag{5}$

	QUESTION 2	MARKS: 15
2.1	$3y + x = 2 \dots \dots$	$\checkmark x = 2 - 3y$ $\checkmark \text{ sub. } x = 2 - 3y \text{ in} (2)$ $\checkmark \text{ std. form}$ $\checkmark \text{ factorisation}$ $\checkmark \text{ both } y \text{ values}$ $\checkmark \text{ both } x \text{ values} $ (6)

	MATHEMATICS	
WEWORANDUW	(Paper 1)	GRADE 11

	L.H.S: $\sqrt{b\sqrt{a}-b}$. $\sqrt{b\sqrt{a}+b}$	
	$=\sqrt{(b\sqrt{a}-b)(b\sqrt{a}-b)}$	$\checkmark (b\sqrt{a}-b)(b\sqrt{a}-b)$
2.2	$=\sqrt{b^2a-b^2}$	\checkmark simplification $\sqrt{b^2 a - b^2}$
	$=\sqrt{b^2(a-1)}$	\checkmark factorisation
	$= b\sqrt{a-1} = \text{R.H.S}$	✓ b (4)

	$3^{a} = 21^{b}$ $(3^{a})^{c} = (21^{b})^{c}$	\checkmark intro. power <i>c</i> on both sides
	$3^{ac} = (3^b \times 7^b)^c$	$\checkmark (3^b \times 7^b)^c$
2.3	$3^{ac} = 3^{bc} \times 3^{ab}$ $3^{ac} = 3^{bc+ab}$	\checkmark deducing that $7^c = 3^a$
	ac = bc + ab	\checkmark equating the indices
	ac = b(c + a) $\therefore b = \frac{ac}{a+c}$	✓ factorisation (5)

	QUESTION 3	MARKS: 18
3.1.1	13	✓ answer (1)
3.1.2	$T_n = an + b$ -3 = 4(1) + b -7 = b $T_n = 4n - 7$ ANY other valid method	✓ $b = -7$ ✓ answer (2)
3.1.3	394 = 4n - 7 401 = 4n 100,25 = n since <i>n</i> ∉ ℕ, 394 is NOT a term	✓ equation ✓ 100,25 = n ✓ any valid explanation (3)

			MATHEMATI	CS	
			(Paper 1)	GRADE 11	
3.2.1	$T_n = n^2$ $0 = (2)$ $0 = 3$ $-3 = c$ OR	$2^{2} + 2n + c$ $1)^{2} + 2(1) + c$ + c	✓ corr. su ✓ simplifi OR	b. cation	
	$T_1 = a$ $0 = 1$ $0 = -a$	a+b+c $1+2+c$ $= 3+c$ $3=c$	✓ corr. su✓ simplifi	b. cation	(2)
3.2.2	$T_n = n^2$ $T_{10} = (1)$ = 11	$(2^{2} + 2n + c)$ $(10)^{2} + 2(10) - 3$ 7	✓ corr. su ✓ answer	b.	(2)
	$n^2 + n^2 + 2n$	2n - 3 > 360 a - 363 > 0	$\checkmark n^2 + 2n$	<i>ı</i> − 363 > 0	
3.2.3	C.V: $n = \frac{(-2)}{2}$	$\frac{1}{2(1)} \pm \sqrt{2^2 - 4(1)(-363)}$	✓ corr. su	b. in corr. formula	
	n = -20	0,08 or n = 18,08	✓ both cri	tical values	
	:: n = 19 $T_{19} > 360$		✓ <i>n</i> = 19		(4)
3.3.1	a	= 10	✓ answer		(1)
3.3.2	b = 99 + 98 + 97 + 96 (99 + (98 +	$ \begin{array}{c}+50 ++3 + 2 + \\ 1) = 100 \\ +2) = 100 \\ . \end{array} $	1 ✓ sequenc	e	
	$\therefore b = (10)$ $b = 493$	$(00) \times 49 + 50$ 50	✓ (100) × ✓ answer	49	(3)

	MATHEMATICS	
MEMORANDUM	(Paper 1)	GRADE 11

4.1 $ \begin{array}{c c} x-2 \ge 0 \\ x \ge 2 \end{array} \qquad \checkmark x-2 \ge 0 \\ \checkmark \text{ answer} $ (4.2 4.2 $ \begin{array}{c c} k = 2 + \frac{\sqrt{3-2}}{4} \\ = 2\frac{1}{4} \end{array} \qquad \checkmark \text{ answer} $ (4.3 $ g(k) = \left(2\frac{1}{4}\right)^2 - 1 \\ = 4\frac{1}{16} \operatorname{OR} \frac{65}{16} \operatorname{OR} 4,06 $ $ \begin{array}{c c} \checkmark x - 2 \ge 0 \\ \checkmark \text{ answer} \end{array} $		QUESTION 4	MARKS: 6
4.2 2 $k = 2 + \frac{\sqrt{3-2}}{4}$ 4.3 $g(k) = \left(2\frac{1}{4}\right)^2 - 1$ $= 4\frac{1}{16}$ OR $\frac{65}{16}$ OR 4,06 \checkmark answer	4.1	$\begin{array}{c} x-2 \ge 0\\ x \ge 2 \end{array}$	$\checkmark x - 2 \ge 0$ $\checkmark \text{ answer} $ (2)
4.3 $k = 2 + \frac{\sqrt{3-2}}{4}$ $= 2\frac{1}{4}$ $\varphi(k) = \left(2\frac{1}{4}\right)^2 - 1$ $= 4\frac{1}{16} \text{ OR } \frac{65}{16} \text{ OR } 4,06$ $\checkmark \text{ answer}$	4.2	2	✓ answer (1)
	4.3	$k = 2 + \frac{\sqrt{3-2}}{4}$ = $2\frac{1}{4}$ $g(k) = \left(2\frac{1}{4}\right)^2 - 1$ = $4\frac{1}{16}$ OR $\frac{65}{16}$ OR 4,06	✓ $k = 2\frac{1}{4}$ ✓ substitution ✓ answer (3)

	QUESTION 5	MARKS: 12
5.1	for x- intercept, make $y = 0$ $3^{x} - 1 = 0$ $3^{x} = 1$ $3^{x} = 3^{0}$ x = 0 for y- intercept, make $x = 0$ $y = 3^{0} - 1$ y = 0	$\checkmark 1 = 3^{0}$ $\checkmark x = 0$ $\checkmark y = 0$ (3)

	MEMOR	ANDUM (Pa	ATHEMATICS aper 1) GRA	DE 11
5.2.	y y f	<i>x</i>	 ✓ shape ✓ passing thr. origin ✓ asymptote at y = -1 	(3)
5.3	$(-1;\infty)$ OR $y > -1$		✓ answer	(1)
5.4.1	x = -2		✓ answer	(1)
5.4.2	x > -1		✓ answer	(1)
5.5	$3h(x) = 726$ $h(x) = 242$ $3^{x} - 1 = 242$ $3^{x} = 243$ $3^{x} = 3^{5}$		✓ 242 ✓ 3 ⁵	
	<i>x</i> = 5		✓ answer	(3)

MEMORANDUM	MATHEMATICS	
	(Paper 1)	GRADE 11

	QUESTION 6	MARKS: 10
6.1	$\begin{array}{l} x = 1 \\ y = -2 \end{array}$	$ \checkmark x = 1 \checkmark y = -2 $ (2)
6.2	for x-intercept, make $y = 0$ $0 = \frac{3}{x-1} - 2$ $2 = \frac{3}{x-1}$ $x = 2\frac{1}{2}$ for y -intercept, make $x = 0$ $y = \frac{3}{0-1} - 2$ $y = -5$	$\checkmark y = 0$ $\checkmark x = 2\frac{1}{2}$ $\checkmark y = -5$
6.3	-2 1 $2\frac{1}{2}$	(3) \checkmark shape \checkmark x and y-intercepts \checkmark asymptotes (3)
6.4	Reflection about the y-axis.	✓ reflection ✓ y-axis (2)

MEMORANDUM

	QUESTION 7	MARKS: 20
7.1.1	$x = \frac{-b}{2a}$ $= \frac{-(8)}{2(2)}$ $= -2$ $D(-2; -5)$	✓ corr. sub. in corr. formula ✓ x -co-ord 2 ✓ y -co-ord 5 (if not ordered pair) $\frac{2}{3}$ (3)
7.1.2	$x \ge 0$ or $x \le -4$	✓ $x \ge 0$ ✓ $x \le -4$ (incorrect notation) $\frac{1}{2}$ (2)
	LM = k(x) - p(x) = 2x ² + 8x + 3 - (2x - 4) = 2x ² + 6x + 7 $Min_{LM} = \frac{4ac - b^{2}}{4a}$ = $\frac{4(2)(7) - 6^{2}}{4(2)}$ = $2\frac{1}{2}$	 ✓ simplification ✓ formula ✓ corr. sub. in corr. formula ✓ answer
7.1.3	OR $LM = k(x) - p(x)$ $= 2x^{2} + 8x + 3 - (2x - 4)$ $= 2x^{2} + 6x + 7$ $x = \frac{-b}{2a}$	✓ simplification
	$= \frac{-(6)}{2(2)}$ = $-\frac{3}{2}$ Min _{LM} = $2(-\frac{3}{2})^2 + 6(-\frac{3}{2}) + 7$ = $2\frac{1}{2}$	 ✓ corr. sub. in corr. formula ✓ sub. <i>x</i> in eqn. ✓ answer (4)

MATHEMATICS		
(Paper 1)	GRADE 11	

7.1.4	Ave. grad = $\frac{k(-2) - k(3)}{-2 - 3}$ = $\frac{-5 - 45}{-2 - 3}$ = 10	✓ -5 ✓ -45 ✓ answer (3)
7.1.5	$2x^{2} + 8x + 3 = 2x + t$ $2x^{2} + 6x + 3 - t = 0$ $\Delta = b^{2} - 4ac$ $= (6)^{2} - 4(2)(3 - t)$ = 39 - 24 + 8t = 12 + 8t for = roots, $\Delta = 0$ 12 + 8t = 0 8t = -12 $t = -1\frac{1}{2} \text{ or } -\frac{3}{2} \text{ or } -1,5$	✓ std. form ✓ corr. sub. in formula ✓ value of Δ ✓ $\Delta = 0$ ✓ answer (5)
7.2	-4 $1\frac{1}{2}$ x	 ✓ shape ✓ <i>x</i>-intercepts ✓ turning point in 3rd quadrant (3)