testpapers.co.za

GAUTENG PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION JUNE 2016
 GRADE 11

MATHEMATICS P1

MEMORANDUM

GAUTENG DEPARTMENT OF EDUCATIONPROVINCIAL EXAMINATION

MATHEMATICS

(Paper 1)
MEMORANDUM

QUESTION 1

1.1		$\begin{aligned} & (x-2)(3 x+4)=0 \\ & x=2 \text { OR } x=-\frac{4}{3} \end{aligned}$	$\begin{array}{ll} \checkmark & x=2 \\ \checkmark & x=-\frac{4}{3} \end{array}$	(2)
1.2	1.2.1	$\begin{gathered} \sqrt{2-x}=x+4 \\ (\sqrt{2-x})^{2}=(x+4)^{2} \\ 2-x=x^{2}+8 x+16 \\ x^{2}+8 x+16+x-2=0 \\ x^{2}+9 x+14=0 \\ (x+2)(x+7)=0 \\ x=-2 \text { OR } x=-7 \\ \text { NA } \end{gathered}$	\checkmark Squaring both sides $\checkmark \quad$ Standard form \checkmark Factors \checkmark Answers $\checkmark x=-2$ only	(5)
	1.2.2	$\begin{aligned} & 2 x(x-3)=1 \\ & 2 x^{2}-6 x-1=0 \\ & a=2 ; b=-6 ; c=-1 \\ & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ & x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(2)(-1)}}{2(2)} \\ & x=\frac{6 \pm \sqrt{36+8}}{4} \\ & x=\frac{6 \pm \sqrt{44}}{4} \\ & x=3,2 \text { OR } x=-0,2 \end{aligned}$	\checkmark Standard form \checkmark Substitution \checkmark Answer \checkmark answer	(4)

MEMORANDUM	MATHEMATICS (Paper 1)

	1.2.3 $\begin{aligned} & \frac{x^{2}+4 x+3}{x-1}>0 \\ & \frac{x^{2}+4 x+3}{x-1}>0 \quad x \neq 1 \\ & \frac{(x+1)(x+3)}{x-1}>0 \\ & -3\langle x<-1 \text { or } x>1 \\ & \quad \text { OR } \\ & (-3 ;-1) \cup(1 ; \infty)\end{aligned}$	$\checkmark \quad x+1$ $\checkmark \quad x+3$ \checkmark Critical values in context of an inequality \checkmark correct notation Only focus on numerator	(4)
1.3	$\begin{aligned} & 2 x^{2}-3 x=8 \\ & x^{2}-\frac{3}{2} x=4 \\ & x^{2}-\frac{3}{2} x+\left(\frac{1}{2} \times \frac{-3}{2}\right)^{2}=4+\left(\frac{1}{2} \times \frac{-3}{2}\right)^{2} \\ & \left(x-\frac{3}{4}\right)^{2}=4+\frac{9}{16} \\ & \left(x-\frac{3}{4}\right)^{2}=\frac{73}{16} \\ & x-\frac{3}{4}= \pm \sqrt{\frac{73}{16}} \\ & x=\frac{3}{4} \pm \sqrt{\frac{73}{16}} \\ & x=\frac{3+\sqrt{73}}{4} \quad \text { OR } \quad x=\frac{3-\sqrt{73}}{4} \\ & x=2,89 \text { OR } x=-1,39 \end{aligned}$	\checkmark Divide by 2 $\checkmark \frac{73}{16}$ \checkmark Finding square root (\pm) $\checkmark x=2,89$ $\checkmark \quad x=-1,39$ Use of quadratic formula max $2 / 5$ for the two correct answers.	(5)
			[20]

| MEMORANDUM | MATHEMATICS
 (Paper 1) |
| :--- | :--- | Grade 11

QUESTION 2

2.1	$\begin{aligned} & \frac{33^{x}-4}{3^{x}-3} \\ & =\frac{3.3^{x}-}{3^{x}-} \\ & =\frac{3^{x}(3}{3^{x}}(1 \\ & =\frac{3-36}{-2} \\ & =\frac{-33}{-2} \\ & =16 \frac{1}{2} \end{aligned}$	3^{x+2} $3^{x} \cdot 3^{x}$ 4.9) OR $\frac{33}{2}$	\checkmark Expansion $\checkmark \quad 3^{3}(3-4.9)$ $\checkmark \quad 3^{x}(1-3)$ \checkmark Answer If k-method is used exactly the same mark allocation	(4)
2.2	2.2.1	$\begin{aligned} & \frac{\sqrt{5}}{\sqrt{5}+2}+\frac{10}{\sqrt{5}} \\ & =\frac{5+10(\sqrt{5}+2)}{5+2 \sqrt{5}} \\ & =\frac{5+10 \sqrt{5}+20}{5+2 \sqrt{5}} \\ & =\frac{25+10 \sqrt{5}}{5+2 \sqrt{5}} \\ & =\frac{5(5+2 \sqrt{5})}{5+2 \sqrt{5} 5} \\ & =5 \end{aligned}$ OR $\begin{aligned} & \frac{\sqrt{5}}{\sqrt{5}+2}+\frac{10}{\sqrt{5}} \\ & \frac{\sqrt{5}}{\sqrt{5}+2} \times \frac{\sqrt{5}-2}{\sqrt{5}-2}+\frac{10}{\sqrt{5}} \\ & =\frac{5-2 \sqrt{5}}{5-4}+\frac{10}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \\ & =5-2 \sqrt{5}+\frac{10 \sqrt{5}}{5} \\ & =5-2 \sqrt{5}+2 \sqrt{5} \\ & =5 \end{aligned}$	$\checkmark \frac{5+10(\sqrt{5}+2)}{5+2 \sqrt{5}}$ \checkmark simplification $\checkmark \frac{5(5+2 \sqrt{5})}{5+2 \sqrt{5} 5}$ \checkmark answer Rationalizing the denominator \checkmark Rationalizing the denominator \checkmark Simplification \checkmark Answer	(4)

MEMORANDUM	MATHEMATICS Grade 11 (Paper 1)

	2.2.2	$\begin{aligned} & \left(\frac{\sqrt{7^{2011}}-\sqrt{7^{2009}}}{\left.\frac{\sqrt{7^{200}}}{}+\sqrt{7}\right)^{2}}\right. \\ & =\left(\frac{\sqrt{7^{2008}}\left(\sqrt{7^{3}}-\sqrt{\left.7^{1}\right)}\right.}{\sqrt{7^{2008}}}+\sqrt{7}\right)^{2} \\ & =\left(\sqrt{7^{3}}-\sqrt{7^{1}}+\sqrt{7}\right)^{2} \\ & =(7 \sqrt{7}-\sqrt{7}+\sqrt{7})^{2} \\ & =(7 \sqrt{7})^{2} \\ & =343 \quad \text { OR } \end{aligned}$	$\checkmark \sqrt{7^{2008}}$ $\checkmark \sqrt{7^{3}}-\sqrt{7^{1}}$ $\checkmark(7 \sqrt{7})^{2}$ \checkmark Answer	
	2.2.2 cont.	$\begin{aligned} & \left(\frac{\sqrt{7^{2011}}-\sqrt{7^{2009}}}{\sqrt{7^{2008}}}+\sqrt{7}\right)^{2} \\ & =\left(\frac{7 \frac{2011}{2}-7 \frac{2009}{2}}{7^{\frac{2008}{2}}}+\sqrt{7}\right)^{2} \\ & =\left(\frac{7 \frac{2009}{2}(7-1)}{7^{1004}}+\sqrt{7}\right)^{2} \\ & =(7 \sqrt{7})^{2} \\ & =(49)(7) \\ & =343 \end{aligned}$	$\checkmark 7^{\frac{2009}{2}}$ \checkmark (7-1) $\checkmark(7 \sqrt{7})^{2}$ \checkmark Answer	(4)
2.3	from: subst subst y $y=1$ $y=-1$ OR	$\begin{aligned} & .4^{y}=1 \\ & .2^{2 y}=2^{0} \\ & +2 y=0 \\ & =-2 y \ldots \ldots \ldots \ldots \ldots . \text { (1) } \\ & \text { into }\left(4^{y}\right)^{x}=\frac{1}{16} \\ & \quad\left(4^{y}\right)^{-2 x}=\frac{1}{16} \\ & 2^{-4 y^{2}}=2^{-4} \\ & -4 y^{2}=-4 \\ & y= \pm 1 \\ & = \pm 1 \text { into (1) } \\ & x=-2 \\ & x=2 \end{aligned}$	```\(\checkmark 2^{2 y}\) \(\checkmark x+2 y=0\) OR \(x=-2 y\) \(\checkmark\) substitution \(\checkmark\) same bases on either side \(\checkmark y= \pm 1\) \(\checkmark \quad x= \pm 2\)```	(6)

| MEMORANDUM | MATHEMATICS
 (Paper 1) |
| :--- | :--- | Grade 11

QUESTION 3

3.1	3.1 .1	Roots are non-real (imaginary) therefore $\Delta<0$.	$\checkmark \checkmark$ Non-real roots $\mathbf{O R}$ $\checkmark \checkmark \Delta<0$	(2)
3.1 .2	Roots are real and equal, $\Delta=0$	\checkmark Roots are real \checkmark Roots equal	(2)	
3.2	$\Delta=(2 k-1)^{2}-4(k)(k-1)$ $=4 k^{2}-4 k+1-4 k^{2}+4 k$ $=1$ 1 is a perfect square, the coefficients are rational, so the roots are rational.	\checkmark Substitution \checkmark \checkmark Simplification \checkmark Value of $\mathbf{1}$		

QUESTION 4

4.1	4.1.1	-1; 8; 23;	$\begin{array}{\|l\|} \hline \checkmark-1 \\ \checkmark 8 \\ \checkmark 23 \\ \hline \end{array}$	(3)
	4.1.2	$\begin{aligned} & 3 k^{2}-4=71 \\ & k^{2}=25 \\ & k= \pm 5 \\ & \therefore k=5 \end{aligned}$	$\begin{array}{ll} \sqrt{3} k^{2}-4=71 \\ \checkmark & k^{2}=25 \text { or } \\ (k-5)(k+5) \\ \checkmark & k=5 \end{array}$ No marks for $k= \pm 5$	(3)
4.2	4.2.1	Quadratic number pattern $0 ; 5 ; 12 ; 21 ; \ldots$ 22 Quadratic number pattern OR/OF Quadratic number pattern The first difference is not constant but the second difference is constant.	\checkmark Quadratic \checkmark second difference is constant or illustration If the learner only show the pattern without justification only 1 mark	(2)

| MEMORANDUM | MATHEMATICS
 (Paper 1) |
| :--- | :--- | Grade 11

	4.2.2	$\begin{aligned} & 2 a=2 \\ & \therefore a=1 \\ & 3 a+b=5 \\ & 3(1)+b=5 \\ & \therefore b=2 \\ & \\ & \mathrm{~T}_{1}=a+b+c \\ & 0=1+2+c \\ & \therefore c=-3 \\ & \therefore \mathrm{~T} n=a n^{2}+b n+c \\ & \mathrm{~T} n=n^{2}+2 n-3 \end{aligned}$	$\checkmark a=1$ $\checkmark b=2$ $\begin{aligned} & \checkmark c=-3 \\ & \checkmark \mathrm{~T} n=n^{2}+2 n-3 \end{aligned}$	(4)
4.3	4.3.1	$\frac{\text { Row 4 }}{7^{2}-6^{2}+5^{2}-4^{2}=22}$ Row 20 $23^{2}-22^{2}+21^{2}-20^{2}=86$	$\checkmark \text { Row } 4=22$ \checkmark Row $20=86$	(2)
	4.3.2	$(n+3)^{2}-(n+2)^{2}+(n+1)^{2}-n^{2}=4 n+6$	$\begin{aligned} & \checkmark a=n+3 \\ & \checkmark b=n+2 ; c=n+1 ; d=n \\ & \checkmark T_{n}=4 n+6 \end{aligned}$ If only the general term was given $1 / 3$	(3)
				[17]

QUESTION 5

5.1	$x=-2$ and $y=1$	$\left[\begin{array}{ll} \checkmark & x=-2 \\ \checkmark & y=1 \end{array}\right.$ Both has to be in equation form. If not $0 / 2$ If $p=-2$ and $q=10 / 2$	(2)
5.2	$\begin{aligned} & \text { Sub B }=(0 ;-2) \text { in } \mathrm{y}=\frac{k}{x+2}+1 \\ & -2=\frac{k}{0+2}+1 \\ & -2=\frac{k}{2}+1 \\ & -3=\frac{k}{2} \\ & \text { then } k=-6 \\ & \therefore y=\frac{-6}{x+2}+1 \end{aligned}$	\checkmark Substitution of $(0 ;-2)$ and $q=1$ $\checkmark k$ value \checkmark Answer	(3)

MEMORANDUM	MATHEMATICS (Paper 1)	Grade 11

5.3	$\begin{aligned} & 0=\frac{-6}{x+2}+1 \\ & -1=\frac{-6}{x+2} \\ & (x+2)=6 \\ & x=4 \\ & \therefore \mathrm{D}(4 ; 0) \end{aligned}$	$\checkmark \quad y=0$ $\checkmark \quad x+2=6$ $\checkmark \quad x=4$ \checkmark Writing Point D in coordinate form.	(4)
5.4	$\begin{aligned} & \mathrm{C}(-2 ; 0) \text { and } \mathrm{B}(4 ; 0) \\ & y=a(x+2)(x-4) \\ & -2=a(0+2)(0-4) \\ & -2=a(-8) \\ & \frac{1}{4}=a \\ & y=\frac{1}{4}(x+2)(x-4) \\ & y=\frac{1}{4}\left(x^{2}-2 x-8\right) \\ & =\frac{1}{4} x^{2}-\frac{1}{2} x-2 \end{aligned}$	CA from 5.3 $\checkmark \quad x+2$ $\checkmark \quad(x-4)$ \checkmark Sub. B $(0 ;-2)$ $\checkmark a=\frac{1}{4}$ \checkmark answer in any form	(5)
5.5	$g(x)=2^{x+2}$	\checkmark Shape \checkmark Coordinates of (0;4) \checkmark Graph not crossing the x-axis	(3)
5.6	$y=2^{x-1}$	$\checkmark \checkmark y=2^{x-1}$	(2)
5.7	$\begin{aligned} & y \text { is real }, y \neq 1 \\ & (y \in \mathbb{R}) \end{aligned}$	$\checkmark y$ is real, $\quad y \neq 1$ both condition	(1)
			[20]

| MEMORANDUM | MATHEMATICS
 (Paper 1) |
| :--- | :--- | Grade 11

QUESTION 6

6.1	$x \in[0 ; 4]$ OR $0 \leq x \leq 4$	$\left\lvert\, \begin{array}{ll} \checkmark & 0 \\ \checkmark & 4 \end{array}\right.$	(2)
6.2	$\begin{aligned} h(x) & =-\left(x^{2}-4 x+4-4\right) \\ & =-(x-2)^{2}-4 \end{aligned}$	$\begin{array}{ll} \checkmark & a=-1 . \\ \checkmark & p=-2 . \\ \checkmark & q=-4 . \end{array}$	(3)
6.3		CA from 6.1 \checkmark Shape (neg graph) \checkmark Turning point $\checkmark y$-intercept. \checkmark positive y-values only.	(4)
6.4	$\begin{aligned} & h(x)=-x^{2}+4 x \\ & =-(x-5)^{2}+4(x-5) \\ & =-\left(x^{2}-10 x+25\right)+4 x-20 \\ & =-x^{2}+10 x-25+4 x-20 \\ & \therefore h(x-5)=-x^{2}+14 x-45 \end{aligned}$ OR $\begin{aligned} & y=-(x-2)^{2}+4 \\ & =-(x-2-5)^{2}+4 \\ & =-(x-7)^{2}+4 \\ & =-\left(x^{2}-14 x+49\right)+4 \\ & =-x^{2}+14 x-49+4 \\ & =-x^{2}+14 x-45 \end{aligned}$	\checkmark Sub x with $(x-5)$ \checkmark Simplification \checkmark Answer OR $\checkmark(x-2-5)^{2}$ \checkmark Simplification \checkmark Answer	(3)

| MEMORANDUM | MATHEMATICS
 (Paper 1) |
| :--- | :--- | Grade 11

6.5	$k(x)=x^{2}-4 x$	$\begin{array}{ll} \checkmark & x^{2} \\ \checkmark & -4 x \end{array}$	(2)
6.6	$\begin{aligned} & p(-3)=\frac{9}{2} \\ & p(-1)=\frac{1}{2} \end{aligned}$ Average gradient $\begin{aligned} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & =\frac{\frac{9}{2}-\frac{1}{2}}{-3-(-1)} \end{aligned}$ \therefore Average gradient of $p=-2$	$\checkmark p(-3)=\frac{9}{2}$ $\checkmark p(-1)=\frac{1}{2}$ \checkmark Answer	(3)
$\square[17]$			

