

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2020

AGRICULTURAL SCIENCES P2 MARKING GUIDELINE (EXEMPLAR)

MARKS: 150

This marking guideline consists of 9 pages.

SECTION A

QUESTION 1

1.1	1.1.1	A✓✓		
	1.1.2	C✓✓		
	1.1.3	B✓✓		
	1.1.4	C✓✓		
	1.1.5	B✓✓		
	1.1.6	C √√		
	1.1.7	C √√		
	1.1.8	A✓✓		
	1.1.9	D ✓ ✓		
	1.1.10	D✓✓	(10 x 2)	(20)
1.2	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5	H ✓ ✓ E ✓ ✓ F ✓ ✓ A ✓ ✓	(5 x 2)	(10)
1.3	1.3.1 1.3.2 1.3.3 1.3.4 1.3.5	Transpirational pull ✓✓ Fertiliser ✓✓ Pollination ✓✓ Integrated Pest Management ✓✓ Green house ✓✓	(5 x 2)	(10)
1.4	1.4.1 1.4.2 1.4.3 1.4.4	Diffusion ✓ Germination ✓ Monoculture ✓ Aquaculture ✓		

- 1.4.5 Survey ✓ (5 x 1)
 - TOTAL SECTION A: 45

(5)

SECTION B

QUESTION 2: PLANT STUDIES (NUTRITION)

2.1	2.1.1	Process represented by the chemical equation Photosynthesis ✓		(1)
	2.1.2	Compound B Glucose ✓		(1)
	2.1.3	 Plant organs where compound B is found Leaves ✓ Stems ✓ Roots ✓ Tubers ✓ Bulbs ✓ 	(Any 2)	(2)
	2.1.4	 Methods of speeding up the rate of photosynthesis Use of greenhouses ✓ Pruning ✓ Trellising systems ✓ Using optimum plant density ✓ 	(Any 2)	(2)
2.2	2.2.1	 Functions of water in plants Provides mechanical rigidity to cells ✓ Important in chemical reactions ✓ A universal solvent ✓ It serves as a transport medium ✓ Temperature regulation ✓ 	(Any 2)	(2)
	2.2.2	 Adaptation of the plant to reduce transpiration rate Leaves are reduced ✓ Photosynthesis occurs on stems ✓ Stems store water ✓ Stems are shiny to reflect heat waves and reduce transpiration ✓ 	(Any 3)	(3)
	2.2.3	 Consequences of lack of adaptations to reduce wate Plant cannot carry out metabolism due to lack water Failure to regulate temperature ✓ Failure to transport minerals and products of photosynthesis ✓ Wilting ✓ Senescence ✓ 	r loss ⁄ (Any 2)	(2)
2.3	2.3.1	Classification of inorganic fertiliser Inorganic fertiliser ✓		(1)

4		AGRICULTURAL SCIENCES P2	EC/NOVEMBER	<u>R 2020)</u>
	2.3.2	 Examples of phosphorus fertilisers Superphosphate / mono-calcium phosphate ✓ Raw/rock phosphate ✓ 		(2)
	2.3.3	Percentage nitrogen in a fertiliser bag N = 280 g/1 000 g x 100 ✓ = 28% ✓		(2)
	2.3.4	 Evidence of state regulation of fertiliser production Registration number ✓ Act number 36 of 1947 ✓ 		(2)
2.4	2.4.1	Identification of structure C Transport protein ✓		(1)
	2.4.2	Identification of transport mechanisms A – Passive uptake ✓ B – Active uptake ✓		(2)
	2.4.3	 Motivation of answers to QUESTION 2.4.2 A does not require energy in the form of ATP while in B is required ✓ 	energy	
		 OR In A movement is along concentration gradient ✓ while movement is against concentration gradient ✓ 	in B	(2)
2.5	2.5.1 2.5.2 2.5.3 2.5.4 2.5.5	Basal application Broadcasting ✓ Foliar application ✓ Band placing ✓ Fertigation ✓		 (1) (1) (1) (1) (1)
2.6	2.6.1	Deduction of an advantage of green manuring Soil conservation \checkmark		(1)
	2.6.2	Explanation of the advantage of using leguminous plan Legumes form a mutually symbiotic relationship with nitrog bacteria, ✓ which improve the nitrogen content of the soil.	n ts gen fixing ✓	
		OR		
		Legumes are rich in proteins ✓ upon being ploughed under manures they are decomposed by microbes to nitrogen compounds increasing the soil's nitrogen content. ✓	as green containing	(2)
	2.6.3	 Advantages of green manuring Reduces soil erosion ✓ Improves soil fertility ✓ Improves soil structure ✓ 	(Any 2)	(2) [35]

QUESTION 3: PLANT REPRODUCTION AND PROTECTION

3.1	3.1.1	Name of plant propagation method Grafting ✓	(1)
	3.1.2	Labelling A – scion ✓ B – rootstock ✓	(2)
	3.1.3	 Advantages of plant propagation method in QUESTION 3.1.1. Fruit trees can be produced with several varieties ✓ The appearance or form of a plant can be changed ✓ An undesirable trait can be corrected ✓ The scion can be grafted onto a healthier rootstock with a more vigorous root system ✓ (Any 2) 	(2)
	3.1.4	Examples of fruit trees propagated using grafting in South Africa • Oranges ✓ • Lemons ✓ • Nartjie ✓ • Grapes ✓ • Macadamia ✓ • Avocado ✓ • Nectarines ✓ • Apples ✓ (Any 2)	(2)
3.2	3.2.1	Name of phenomenon described in the passage Ablactation ✓	(1)
	3.2.2	Biological cause of ablactation in the passage Inadequate pollination/thrips ✓	(1)
	3.2.3	Climatic causes of ablactation • Frost ✓ • Excessive rain ✓ • Wind ✓	(2)
	3.2.4	Methods of protecting crops from climatic factors mentioned in QUESTION 3.2.3 Frost – tunnels/greenhouses/mulching ✓ Excessive rain – greenhouses/tunnels ✓ Wind – Shade houses/wind breaks/greenhouses/tunnels ✓ (Any 2)	(2)
3.3.	Matchir 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	ag propagation methods with appropriate plant cuttings ✓ bulbs ✓ tubers ✓ rhizomes ✓ runners ✓	(1) (1) (1) (1) (1)

6		AGRICULTURAL SCIENCES P2	(EC/NOVEMBE	R 2020)
3.4	3.4.1	Meaning of acronym GMO Genetically Modified Organism ✓		(1)
	3.4.2	Advantage of GM technology mentioned in the passa Production of herbicide resistant plants ✓	ige	(1)
	3.4.3	 Other methods of plant improvement in addition to G technology Selection ✓ Hybridisation ✓ Mutation ✓ 	M (Any 2)	(2)
3.5	3.5.1	 Environmental conditions that lead to rapid multiplic pathogens Monocultures ✓ High planting densities ✓ High humidity ✓ High temperatures ✓ 	ation of (Any 2)	(2)
	3.5.2	 Micro-organisms that cause diseases Viruses ✓ Bacteria ✓ Fungi ✓ 	(Any 2)	(2)
	3.5.3	 Measures for preventing spread of plant diseases Remove all weeds ✓ Avoid overcrowding plants ✓ Use disease resistant varieties ✓ Practise intercropping ✓ Disinfect pruning tools ✓ Practise crop rotation ✓ 	(Any 2)	(2)
3.6	3.6.1	Matching insects with the statements given (a) $-A \checkmark$ (b) $-C \checkmark$ (c) $-B \checkmark$		(3)
	3.6.2	 Advantages of using the pest control method in QUESTION 3.6.1. (c) Not harmful to the environment ✓ No need to purchase expensive chemical pesticides ✓ 	/	(2)
	3.6.3	 Non-chemical pest control methods Crop rotation ✓ Biological control ✓ Intercropping ✓ Mechanical control ✓ Burning ✓ 	(Any 2)	(2) [35]

QUESTION 4: OPTIMAL RESOURCE UTILISATION

4.1	4.1.1	Identification of drainage layouts A – Grid system ✓ B – Herringbone system ✓	(2)
	4.1.2	Letter for the drainage layout which can be used in the given cases (a) B ✓ (b) C ✓ (c) A ✓	(3)
	4.1.3	 Factors farmers should consider when installing pipe drainage systems Pipe diameter ✓ Depth of drains ✓ Drain slope ✓ (Any 2) 	(2)
4.2	4.2.1	 Example of a primary tillage implement Plough ✓ Ripper ✓ (Any 1) 	(1)
	4.2.2	 Main aim of secondary tillage To break clumps of soil left by primary tillage implements ✓ 	(1)
	4.2.3	Differentiate between primary and secondary cultivation Primary tillage tends to produce a rough surface finish ✓ whereas secondary tillage tends to produce a smoother surface finish. ✓	(2)
4.3	4.3.1	Identification of instruments A and B A – Tensiometer ✓ B – Class A evaporation pan ✓	(2)
	4.3.2	 Advantages of irrigation scheduling Minimises crop water stress ✓ Reduces the farmer's cost of water and labour ✓ Minimises waterlogging problems ✓ Increases crop yields and quality ✓ (Any 2) 	(2)
	4.3.3	 Sources of water for irrigation Lakes / dams ✓ Permanent rivers / streams ✓ Aquifers / springs / boreholes ✓ 	(2)

4.4	4.4.1	Identification of the farming system Precision farming ✓			(1)
	4.4.2	Identify a piece of equipment which plays a central role in the farming system in the scenario GPS ✓			
	4.4.3	 Deduction of TWO advantages of the system Allows the farmer to compare harvest information and identify poor spots in lands ✓ Allows the farmer to see exactly how much has been harvested from specific areas in the land ✓ (Any 2) 			
	4.4.4	Other pieces of implementation of pre • GIS maps ✓ • Computers ✓ • Satellites ✓	equipment required ecision farming	d for successful	(2)
4 5	1 5 1	Table aboving the rec	nonce of a formar's	(, (, (, (, (, (, (, (, (, (, (, (, (, ((2)
4.5	4.3.1				
		Voar	Maize y	vield (t)	
			Rainfed	Irrigated	
		2010	80	90	
		2011	120	140	
		2012	80	82	
		2013	60	80	
		2014	90	110	
		 Marking checklist Title ✓ Units (t) ✓ Correct rainfed yiel Correct irrigated yiel Correct years ✓ Accuracy ✓ 	ds √ elds √		(6)
	4.5.2	Water delivery method which results in higher yields Irrigation ✓			
	4.5.3	Justification for answer to QUESTION 4.5.2 Irrigated fields had higher yields than rainfed fields over the 5 years \checkmark			
	4.5.4	Prediction of what could have caused the results in 2012 There were sufficient rains in 2012. \checkmark As a result, there were no significant differences between irrigated and rainfed fields. \checkmark			

AGRICULTURAL SCIENCES P2

8

4.4

(EC/NOVEMBER 2020)

4.5.5 Challenges that limit the widespread adoption of irrigation systems

- Lack of water sources ✓
- Cost of installation and maintenance of the irrigation systems ✓
- Lack of knowledge required to run and maintain the irrigation systems ✓ (Any 2)

(2) **[35]**

- TOTAL SECTION B: 105
 - GRAND TOTAL: 150