

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2020

AGRICULTURAL SCIENCES P1 MARKING GUIDELINE (EXEMPLAR)

MARKS: 150

This marking guideline consists of 9 pages.

SECTION A

QUESTION 1

1.1	1.1.1	C √ √		
	1.1.2	$D\checkmark\checkmark$		
	1.1.3	C √ √		
	1.1.4	A✓✓		
	1.1.5	C √ √		
	1.1.6	$D\checkmark\checkmark$		
	1.1.7	Avv		
	1.1.8	B√√		
	1.1.9	$D\checkmark\checkmark$		
	1.1.10	B ✓✓	(10 x 2)	(20)
1.2	1.2.1	B only ✓✓		
1.2	1.2.2	A only \checkmark		
	1.2.3	None $\checkmark \checkmark$		
	1.2.4	B only ✓✓		
	1.2.5	Both A and B $\checkmark \checkmark$	(5 x 2)	(10)
			(***_)	(1-)
1.3	1.3.1	Halogen √√		
	1.3.2	Lewis structure ✓✓		
	1.3.3	Loam ✓✓		
	1.3.4	Nitrogen 🗸 🗸		
	1.3.5	Colloid 🗸 🗸	(5 x 2)	(10)
1.4	1.4.1	Cation ✓		
	1.4.2	Hygroscopic ✓		
	1.4.3	Acid ✓		
	1.4.4	Mycorrhiza ✓		
	1.4.5	Illuviation 🗸	(5 x 1)	(5)
			TOTAL SECTION A:	45

SECTION B

QUESTION 2: BASIC AGRICULTURAL CHEMISTRY

2.1	Compounds		
	2.1.1	Classification of compounds A – Organic ✓ B – Inorganic ✓	(2)
	2.1.2	Reason A – Presence of carbon atom ✓ B – Absence of carbon atom ✓	(2)
	2.1.3	Name of compounds with the same molecular formula but different structure Isomers ✓	(1)
	2.1.4	Chemical formula of a compound represented by structure A	
		 C₄H₁₀ ✓ ✓ OR CH₃ (CH₂)₂ CH₃ ✓ ✓ 	(2)
	2.1.5	Identification of the letter (a) C ✓ (b) B ✓	(2)
2.2	Matter/	/elements/compounds/mixtures	
	2.2.1	 Identification of substances A – Compound ✓ B – Homogeneous mixture ✓ C – Heterogeneous mixture ✓ 	(3)
	2.2.2	 Difference between an element and a compound Element is a substance that cannot be broken down by chemical means ✓ Compound is a substance formed when two or more elements are chemically combined ✓ 	(2)
	2.2.3	Distinguishing between homogeneous and heterogeneous mixtures Homogeneous – mixture in which the dissolved solute cannot be separated from the solvent by physical means \checkmark	
		Heterogeneous – mixture in which the components can be separated by physical means \checkmark	(2)

3

2.3 Fatty acids

	2.3.1	Identification of the fatty acid A – Unsaturated fatty acid ✓ B – Saturated fatty acid ✓		(2)
	2.3.2	Indication of the letter representing the fatty acid		
		 (a) Originating from plants - A ✓ (b) Solid at room temperature - B ✓ (c) Has a high melting point - B ✓ (d) Liquid at room temperature - A ✓ 		(4)
	2.3.3	 TWO importance of fats in living organisms Provide a source of stored energy ✓ Source of insulation and temperature control ✓ Vital part of membrane structure ✓ Play a role in the flow of energy in and out of living cells ✓ Assist in signal transduction ✓ 	Any 2)	(2)
2.4	pH valı	Ies		
	2.4.1	Indicating the pH of substances		
		Baking powder – Alkaline ✓Orange juice– Acidic ✓Milk– Neutral ✓Battery acid– Strongly acidic ✓		(4)
	2.4.2	 Indicating the substance with a high concentration of (a) Hydroxide ion – Baking powder ✓ (b) Hydrogen ion – Battery acid ✓ 		(2)
2.5	Monos	accharide		
	2.5.1	Names of the structures A – Fructose ✓ B – Glucose ✓		(2)
	2.5.2	Indication of the compound formed from fructose and gluc Sucrose \checkmark	ose	(1)
	2.5.3	 TWO elements that are basic composition of carbohydrate Carbon ✓ Hydrogen ✓ Oxygen ✓ 	s Any 2)	(2) [35]

4

5

(4)

QUESTION 3: SOIL SCIENCE

3.1 Soil texture

3.1.1	Indication	of the	sample

- (a) Sample B ✓
- (b) Sample A ✓
- (c) Sample B ✓
- (d) Sample A ✓
- 3.1.2 **Commenting on the pore space of soil sample B by referring to bulk density** Soil sample B has a high bulk density / 3,2 g/cm3 ✓ and therefore lower

soli sample B has a high bulk density / 3,2 g/cm3 \checkmark and therefore lower pore space \checkmark (2)

3.2 Soil structure

3.2.1 Identification of the structure

- A Platy \checkmark B – Prism-like/columnar/prismatic \checkmark C – Crumb/spheroid \checkmark (3)
- 3.2.2 Indicating the letter representing the structure (a) $A \checkmark$ (b) $C \checkmark$ (2)

3.2.3 **TWO malpractices leading to the destruction of structure**

- Flood irrigation ✓
- Cultivation of soil when it is too dry or wet ✓
- Ploughing and other tilling methods \checkmark
- Overgrazing / burning / removal of plant material ✓
- Movement of animals and equipment over wet soil ✓
- Irrigation leading to salt accumulation \checkmark (Any 2) (2)

3.3 Soil moisture

3.3.1	 Naming the term A – Saturation point ✓ B – Field water capacity ✓ 	(2)
3.3.2	 Reason A – Soil is completely filled with water ✓ B – Amount of water held in soil after saturation and drainage ✓ 	(2)
3.3.3	 Plant response grown in soils in Container C and D (a) B – Plants will grow optimally ✓ (b) C – Plants will wither/die ✓ 	(2)
3.3.4	Differentiation between <i>temporal</i> and <i>permanent wilting points</i> Temporal wilting – The point when plants appear wilted only during the hottest part of the day and recover ✓	
	Permanent wilting – Plants do not recover from wilting ✓	(2)

3.4 Soil colour

	3.4.1	Differentiation between homogeneous and non-homogen soil colour Homogeneous – Single dominant colour in soil ✓ Non-homogeneous – Mixture of soil colours ✓	eous	(2)
	3.4.2	 TWO factors determining the colour of soil Presence of water ✓ Gleying conditions ✓ Organic material ✓ Presence of oxides ✓ Presence of carbonates ✓ 	(Any 2)	(2)
3.5	Soil ga	IS		
	3.5.1	Indication of the gas deficient in experiment 1 Oxygen \checkmark		(1)
	3.5.2	Role the gas could have played if not deficient Influenced seed germination ✓		(1)
	3.5.3	Gas high in soil as a result of activities in experiment 2 Carbon dioxide ✓		(1)
	3.5.4	Reason for the high amount of carbon dioxide Released during respiration ✓ of plant roots and soil micro-organisms ✓		(2)
3.6	Soil te	mperature		
	3.6.1	Indication of the letter (a) $A \checkmark$ (b) $C \checkmark$ (c) $A \checkmark$		(3)
	3.6.2	 TWO methods to manipulate soil temperature Irrigation ✓ Mulching ✓ Clear plastic covers ✓ Shading ✓ 	(4 m + 2)	(0)
		 Shading ✓ 	(Any 2)	(2) [35]

QUESTION 4: Soil science

- 4.1 Soil horizons
 - 4.1.1 Sketching the soil profile

$$\frac{A}{B} \checkmark \checkmark$$

$$\frac{C}{R}$$
(2)

4.1.2 Indication of the horizon

(a)
$$E \checkmark$$

(b) $G \checkmark$ (2)

4.1.3 **TWO diagnostic horizons of A horizon**

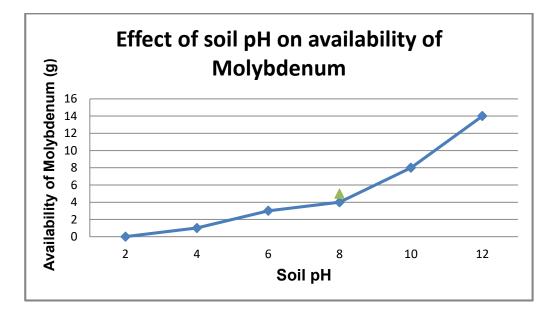
- Humic ✓
- Vertic ✓
- Melanic ✓
 - o Orthic ✓

4.2 Soil classification

4.2.1 **THREE reasons for classification of soil**

- Optimal utilisation of country's natural resources ✓
- Scientific planning of farm ✓
- Determining the crop production potential of the soil ✓
- Improved soil science communication ✓
- Development of new regions ✓
- Valuation of soils ✓ (Any 3) (3)

4.2.2 System used in South Africa to classify soil Binomial system ✓ (1)


Copyright reserved

(Any 2)

(2)

4.3 **Soil pH**

4.3.1 Line graph

Criteria/rubric/marking guideline

rect heading ✓ xis: Correctly calibrated and labelled (Soil pH) ✓ xis: Correctly calibrated and labelled (Availability of molybdenum) ✓ e graph ✓ uracy ✓ rect unit (g) ✓	(6)
Deduction of the influence of acidity and alkalinity on the availability of molybdenum	
In acid soil/low pH molybdenum is not available ✓ In alkaline soil / high pH molybdenum is more available ✓	(2)
Measures to solve problems of:	
 (a) Decreased availability of molybdenum in soils with a pH of between 2 and 4 Application of basic fertilisers such as lime/CaCO₃ ✓ 	(1)
(b) Toxic quantities of molybdenum in soil with pH of 14 Application of gypsum/CaSO₄ ✓	(1)
olloid	
Deduction of the process A – Cation adsorption ✓ B – Cation exchange ✓	(2)
Reason for cation exchange Potassium cation from the soil solution exchanges with the hydrogen adsorbed in the colloid \checkmark	(1)
	 rect heading ✓ kis: Correctly calibrated and labelled (Soil pH) ✓ kis: Correctly calibrated and labelled (Availability of molybdenum) ✓ graph ✓ uracy ✓ rect unit (g) ✓ Deduction of the influence of acidity and alkalinity on the availability of molybdenum In acid soil/low pH molybdenum is not available ✓ In alkaline soil / high pH molybdenum is more available ✓ Measures to solve problems of: (a) Decreased availability of molybdenum in soils with a pH of between 2 and 4 Application of basic fertilisers such as lime/CaCO₃ ✓ (b) Toxic quantities of molybdenum in soil with pH of 14 Application of gypsum/CaSO₄ ✓ Solloid Deduction of the process A – Cation adsorption ✓ B – Cation exchange ✓ Reason for cation exchange Potassium cation from the soil solution exchanges with the hydrogen

4.4

EC/NOVI	EMBER	2020) AGRICULTURAL SCIENCES P1	9
	4.4.3	Indication of the hydrogen cation having an effect on plants Hydrogen in the soil solution ✓	(1)
	4.4.4	TWO types of colloids Organic colloid✓ Inorganic colloid ✓	(2)
	4.4.5	 Differentiation between sodic and saline soils with regard to dominant salts Sodic soil – Sodium carbonates ✓ Saline soil – Chlorides and sulphates of sodium, calcium and magnesium ✓ 	(2)
4.5	Soil o	rganisms	
	4.5.1	Classification of the worms into groups of soil organisms Macro-organisms ✓	(1)
	4.5.2	 TWO conditions for the survival of worms Organic nutrients ✓ Mineral nutrients (nitrogen/phosphorus/potassium) ✓ Soil moisture close to field water capacity ✓ Soil air for respiration ✓ Optimum temperature (temperature between 25 °C and 30 °C ✓ Optimum soil pH ✓ (Any 2) 	(2)
	4.5.3	 Explanation of how worms will assist farmers Break down plant and animal remains ✓ to liberate plant nutrients ✓ Improve soil structure ✓ for increased water retention capacity ✓ Worm casts is rich in organic matter ✓ which improves soil fertility ✓ Maintain CO₂ concentration ✓ which is used by plants during photosynthesis ✓ (Any 1) 	(2)
4.6	Nutrie	nt cycle	
	(a) P r	nt cycle increasing nutrient content in plants otein content – Nitrogen cycle ✓ arbohydrate content – Carbon cycle ✓	(1) (1) [35]
		TOTAL SECTION B:	105

GRAND TOTAL: 150