

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2018

AGRICULTURAL SCIENCES P1 MARKING GUIDELINE

MARKS: 150

This marking guideline consists of 9 pages.

SECTION A

QUESTION 1

1.1	1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9 1.1.10	$\begin{array}{c} B \ \sqrt{\backslash} \\ D \ \sqrt{\backslash} \\ A \ \sqrt{\backslash} \\ D \ \sqrt{\backslash} \\ C \ \sqrt{\backslash} \\ B \ \sqrt{\backslash} \\ A \ \sqrt{\backslash} \\ C \ \sqrt{\backslash} \\ B \ \sqrt{\backslash} \\ B \ \sqrt{\backslash} \\ B \ \sqrt{\backslash} \\ \end{array}$	(10 x 2)	(20)
1.2	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5	B only $\sqrt{}$ A only $\sqrt{}$ None $\sqrt{}$ Both A and B $\sqrt{}$ A only $\sqrt{}$	(5 x 2)	(10)
1.3	1.3.1 1.3.2 1.3.3 1.3.4 1.3.5	Molecule $\sqrt{}$ Hydrogenation $\sqrt{}$ Porosity $\sqrt{}$ Soil profile $\sqrt{}$ Mottled $\sqrt{}$	(5 x 2)	(10)
1.4	1.4.1 1.4.2 1.4.3 1.4.4 1.4.5	Mixture √ Capillary √ Soil form √ Colloid √ Mineralisation √	(5 x 1)	(5)

TOTAL SECTION A: 45

SECTION B

QUESTION 2: BASIC AGRICULTURAL CHEMISTRY

2.1 Periodic table

2.1.1	Comp	oletion	of the	table

- (a) 3 √
- (b) 63,5 √
- (c) 12 √
- (d) 24 √
- (e) 2 √
- (f) $20 \sqrt{}$

2.1.2 Common characteristic of elements in

- (a) Period They have the same number of atomic orbitals/ electron shell $\sqrt{}$ (1)
- (b) Group Have the same number of electrons in their outer orbital $\sqrt{}$ (1)

2.1.3 Difference between halogens and noble gases regarding chemical reactivity

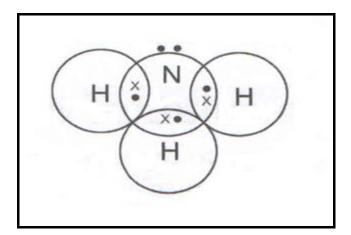
2.1.4 Reason for a difference in halogen and noble gases

Halogens They require one electron to fill their outer shell $\sqrt{}$ **Noble gases** They have a full outer shell $\sqrt{}$ (2)

2.2 Structural formula of compounds

2.2.1 Indication of the functional group

- (a) A: Hydroxyl/OH $\sqrt{}$
- (b) C: Carboxyl/ COOH √ (1)


2.2.2 Chemical formula of methanoic

 $H \sqrt{.} COOH \sqrt{}$ (2)

2.2.3 THREE protective roles of ethane in plants

- It is found in cuticle and therefore protects plants against water loss $\sqrt{}$
- ullet Protects against bacteria, fungi and harmful insects $\sqrt{}$
- Prevents the leaching of minerals during irrigation or rainy days $\sqrt{}$ (3)

2.2.4 Lewis structure of ammonia

Criteria to mark Lewis structure

- Correct elements (H) √
- Correct element (N) √
- Correct number of valence electrons $\sqrt{}$
- Correct bonding √ (4)

2.2.5 Comparing compound A and B based on structural formula

Compound A/ethanol one hydrogen atom is replaced by a

hydroxyl/ OH √

Compound B/ethane two carbons and six hydrogen atoms

combine $\sqrt{}$ (2)

2.3 Pyramid of organic compounds

2.3.1 Naming of the organic compound

A: Carbohydrate $\sqrt{}$ C: Protein $\sqrt{}$ (2)

2.3.2 Indication of the building block of the compound

- C Amino acid √
- D Fatty acid and glycerol √

(2)

2.3.3 Distinction between simple and complex protein

- Simple proteins are proteins which yield only amino- acids when broken down $\boldsymbol{\vee}$
- Complex proteins are simple proteins combined with a non-protein material √

	2.3.4	 TWO reasons why compound B is important. Source of energy √ Forms structural material in plants √ Provides fibre for the functioning of digestive system √ (Any 2) 	(2)
	2.3.5	Indication of compound in D as saturated or unsaturated Unsaturated $\sqrt{}$	(1)
	2.3.6	Reason It has a double bond between carbon atoms $\sqrt{}$	(1) [35]
QUE	STION	3: SOIL SCIENCE	[55]
3.1	3.1.1	Identification of the structure labeled A Prism-like structure	(1)
	3.1.2	 THREE malpractices leading to the destruction of structure Excessive cultivation/tillage accelerates the decomposition of organic matter √ Cultivation of wet soil increases compaction √ Removal of plant residue prevent building up of organic matter √ Overgrazing reduces soil organic matter √ Use of heavy material lead to soil compaction √ Practising flood irrigation √ TWO ways to prevent compaction in structure C 	(3)
		 Application of organic content on soil √ Reducing tillage/minimum tillage √ Mulching/soil cover √ Avoid tillage when the soil is wet √ (Any 2) 	(2)
	3.1.4	 Comparing with a reason the structure B and D regarding suitability for cultivation Structure B Suitable for cultivation √ because the peds are softer and more porous √ Structure D Not suitable for cultivation√ because it has a limited permeability √ 	(2) (2)
3.2	Indica	tion of the method to determine soil texture	
	3.2.1	Texture diagram √	(1)
	3.2.2	Laser diffraction √	(1)
	3.2.3	Settling columns √	(1)

3.3 Influence of clay and sand on soil characteristics

3.3.1	Chemical reactivity	Clay has a larger surface area for chemical reactions because particles are small $$ Sand has a small surface area for chemical reaction due to bigger particles $$	(2)
3.3.2	Fertility	Clay is more fertile because it has a higher cation adsorption capacity $$ Sand soil is less fertile due to low organic matter and low cation adsorption capacity $$	(2)
3.3.3	Erodability	Clay particles are bound together and not easily eroded $$ Sandy soil is light and loose therefore easily eroded $$	(2)

3.4 **Soil temperature**

3.4.1 Explanation of the trend in soil temperature

Gradual increase of temperature from 10 hours until it reaches the peak at 28 hours $\sqrt{}$ and declines afterwards $\sqrt{}$ and stabilises from 45–60 hours $\sqrt{}$

(2)

3.4.2 **Table:**

The table showing soil temperature ranges over 60 hours

HOURS	SOIL TEMPERATURE °C
10	23
20	41
30	46
40	44
50	35
60	35

Criteria/rubric/marking guidelines:

- Correct heading √
- Table √
- Hours and soil temperature √
- Correct unit (°C) √
- Accuracy of values for hours column√
- Accuracy of values for the temperature column√

(2)

(Any 2)

3.4.3	TWO ways to manipulate temperature other than mulch
	$ullet$ Managing soil moisture content/Irrigation and draining soil $\sqrt{}$
	Clear plastic cover √
	• Shading √

Controlled environment/greenhouse √
Tillage practices like deep or shallow ploughing to allow more air

circulation

3.5 Soil air

3.5.1 Deduction of TWO factors influencing storage and movement of soil air from the scenario

- Soil condition √
- Soil depth √
- Pore size distribution/porosity $\sqrt{}$ (Any 2) (2)

3.5.2 Comparison between oxygen and carbon dioxide in soil with those in the atmosphere

Soil air contains a much greater proportion of CO2 than atmospheric air $\boldsymbol{\vee}$

Level of oxygen in soil air is less than the oxygen level in the atmosphere $\boldsymbol{\surd}$

(2)

3.5.3 Relationship between porosity and bulk density

The higher the bulk density $\sqrt{}$ the lesser the pore space $\sqrt{}$

OR

The lower the bulk density $\sqrt{\ }$ the more the pore space $\sqrt{\ }$ (2) [35]

QUESTION 4: SOIL SCIENCE

4.1 Soil horizontal layers

4.1.1 Identification of the letter representing the horizon

- (a) D $\sqrt{}$ (b) E $\sqrt{}$
- (b) $E \sqrt{ }$ (c) $C \sqrt{ }$
- (d) B √

 $\mathsf{B}\,\sqrt{}$

4.1.2 Soil profiles

(a) Wet soil

$$\begin{array}{ccc} \underline{A} \\ \underline{G} \\ C \end{array} OR \quad \underline{O} \\ \overline{G} \quad \sqrt{\sqrt{}} \end{array}$$

(2)

(b) Eroded soil

$$\frac{B}{C}$$
 $\sqrt{\sqrt{}}$

(2)

4.2 Soil classification

4.2.1 THREE reasons for soil classification

- Determining the crop production potential of soil $\sqrt{}$
- Improved soil science communication $\sqrt{}$
- Optimal utilization of country's natural resources √
- Valuation of soil √
- Scientific planning of a farm $\sqrt{}$
- Development of new regions √

(Any 3) (3)

4.2.2 Categories of a binomial soil classification system

- Soil form √
- Soil family/soil series √

(2)

4.2.3 TWO visible characteristics showing Vertic A horizon

- Strongly developed structure/blocky √
- Sticky when wet √
- Large cracks √
- High plasticity index √
- Dark-coloured or red √

(Any 2) (2)

4.3 Cation adsorption

4.3.1 Type of acidity in colloid A

Reserve acidity √

(1)

4.3.2 Reason for the reserve acidity

Hydrogen cation $\sqrt{}$ are adsorbed on the surface of colloid $\sqrt{}$

(2)

Copyright reserved

Please turn over

	4.3.3	 TWO factors causing acidity Carbon dioxide dissolving in water √ Application of nitrogen fertilisers containing ammonium √ Fertilisers containing sulphur which add a hydrogen √ Acid rain √ High rainfall leaching basic cations √ (Any 2) 	(2)
	4.3.4	Justification of the brackishness Sodium cation $$ are adsorbed on the colloid $$	(2)
	4.3.5	Chemical substance to reclaim brackishness Gypsum $\sqrt{}$	(1)
4.4	Nutrie	nt cycle	
	4.4.1	Identification of the nutrient cycle Carbon cycle $\sqrt{}$	(1)
	4.4.2	Processes in A and C A – Photosynthesis $$ C – Feeding $$	(2)
	4.4.3	Indication of the processes in D Combustion $\sqrt{}$	(1)
	4.4.4	Role of soil organisms in the cycle They break down plant and animal remains $$ to release carbon dioxide into the atmosphere to continue with the cycle $$	(2)
4.5	Scena	rio on organic matter content	
	4.5.1	 Identification of farmer with (a) High organic matter content – Farmer B √ (b) Low organic matter content – Farmer A √ 	(2)
	4.5.2	Explanation of how soil tillage can impact on the level of organic	
		matter content Tillage stimulates soil microbes $$ which feed on the organic matter and therefore lowers organic matter content on soil $$	(2)
	4.5.3	 TWO physical effects of high organic matter content on soil Compaction is prevented √ Soil is well drained/aerated √ Soil is less susceptible to erosion √ Improved water absorption √ Increased water – holding capacity √ Soil becomes warmer as it absorbs more heat √ Soil is less inclined to swell when wet √ Soil cultivates easily √ (Any 2) 	(2) [35]

TOTAL SECTION B: 105 GRAND TOTAL: 150