

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2016

AGRICULTURAL SCIENCES P1 MEMORANDUM

MARKS: 150

This memorandum consists of 9 pages.

SECTION A

QUESTION 1

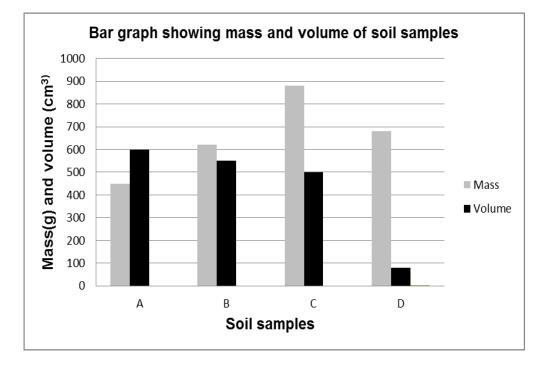
SECTION B

QUESTION 2:	BASIC	AGRICUL	TURAL	CHEMIST	RY
QUESTION 2:	BASIC	AGRICUL	TURAL	CHEMIST	RY

2.1	2.1.1	Identification of compound Sodium chloride $$	(1)					
	2.1.2	Indication of health benefit of sodium chloride It inhibits the growth of bacteria $$	(1)					
	2.1.3	Naming of the parts A – Nucleus $$ B – Shell/orbit/energy level $$ C – Electron $$	(3)					
	2.1.4	Indication of the group of the elements Na – Alkali metals/group 1 $$ Cl – Halogens/group V11 $$	(2)					
	2.1.5	 TWO common characteristics of elements in group 17 They are electron acceptors. √ They are chemically reactive √ Usually poisonous √ (Any 2 x 1) 	(2)					
2.2	Carbo	Carbohydrates						
	2.2.1	Disaccharide formed from glucose and fructose Sucrose $\boldsymbol{}$	(1)					
	2.2.2	Disaccharide formed from glucose and galactose ${\bf V}$ Lactose ${\bf V}$	(1)					
	2.2.3	Chemical formula for sucrose and lactose $C_{12}H_{22}O_{11}\sqrt{}$	(2)					
	2.2.4	Importance of starch: (a) Racing – It provides energy to animals. $$ (b) Selling – It fattens animals. $$	(2)					
2.3	Comp	ounds in agriculture						
	2.3.1	Classification of compounds A and C A – Organic compound $$ C – Inorganic compound $$	(2)					
	2.3.2	Name of the fatty acid A and B A – Unsaturated fatty acid $$ B – Saturated fatty acid $$	(2)					
	2.3.3	Letter representing a fatty acid (a) B $$ (b) A $$	(2)					

	2.3.4	 TWO importance of compound C Acts as a solvent. √ Facilitates chemical reactions. √ Acts as a transport medium. √ It regulates temperature. √ Main source of hydrogen and oxygen. √ 80–90% of all living material consists of water. √ (Any 2 x 1) 	(2)
2.4	Chemi	ical formula of substances	
	2.4.1	Identification of chemical formula (a) Alkali – NaOH $$ (b) Acid – HCl $$	(2)
	2.4.2	Chemical reaction when HCI dissolves in water	
		$\begin{array}{c} & \\ & \\ & \\ H^{+} \\ HCI + H_{2}O \sqrt{\longrightarrow} CI^{-} + H_{3}O^{+} \\ (Acid) & (water) & (chloride) & (hydronium ion) \end{array}$	(3)
2.5	Produ	cts displayed	
	2.5.1	Identification of the functional group of products A and B. Product A and B – Hydroxyl group/OH $$	(1)
	2.5.2	Scientific name of both products Product A – Ethanol $$ Product B – Methanol $$	(2)
	2.5.3	Identification of product ideal for heating Product B $$	(1)
	2.5.4	Structural formula of product B H	
		н — с√— он √	
		H │ H H	(2)
	2.5.5	Scientific name of an oxidised ethanol Ethanoic acid $$	(1) [35]

QUESTION 3: SOIL SCIENCE


3.1	Soil structure					
	3.1.1	Identification of the structure A – Prism-like structure $$ D – Platy structure $$		(2)		
	3.1.2	Indication of the letter representing the structure (a) C \checkmark (b) D \checkmark		(2)		
	3.1.3	Structure recommended for crop production B ${\bf }$		(1)		
	3.1.4	 Improved root penetration √ Greater water infiltration/retention and availability √ Improved biological activity √ Improved organic matter content √ Improved emergence of seedlings √ Reduced soil crusting √ 	Any 3 x 1)	(3)		
3.2	Soil te	Soil texture				
	3.2.1	Identification of soil texture Sample A – Sandy soil $$ Sample C – Clay soil $$		(2)		
	3.2.2	 ONE reason for each structure identified Sample A – Sandy More macro-pores √ Less micro-pores √ High drainage and percolation √ (A 	Any 1 x 1)	(1)		
		 Sample C – Clay Less macro-pore √ More micro-pores √ No drainage and percolation √ (A) 	Any 1 x 1)	(1)		
	3.2.3	Letter representing the sample influencing soil characte	eristics.			
		(a) Sample C $$ (b) Sample A $$				

(c) Sample C $\sqrt{}$ (d) Sample A $\sqrt{}$ (4)

5

3.3 Bulk density of soil samples

3.3.1 Bar graph

Marking graph with the following checklist

	Criteria	Yes: 1 mark	No: 0 mark	
1.	Bar graph	1	0	
2.	Y-axis labelled	1	0	
3.	X-axis labelled	1	0	
4.	Points correctly plotted	1	0	
5.	Correct heading	1	0	
6.	Units	1	0	(6)

3.3.2 Identification of undisturbed soil Soil A $\sqrt{}$

(1)

(2)

3.3.3 **TWO reasons**

- Has a lower bulk density $\sqrt{}$
- Has a higher percentage of pore space $\sqrt{}$

3.3.4 Calculation of bulk density

Bulk density =
$$\frac{\text{Mass}(g)}{\text{Volume}(\text{cm}^3)} \quad \sqrt{}$$

$$=\frac{880 \text{ g}}{500 \text{ cm}^3} \quad \sqrt{}$$

= 1,76 g/cm³ $\sqrt{}$ (3)

6

3.4	Soil gases		
	3.4.1	Carbon dioxide $$	(1)
	3.4.2	Nitrogen $$	(1)
	3.4.3	Oxygen $$	(1)
3.5 Indication of plant response to different soil water conditions			
	3.5.1	Plants will die $$	(1)
	3.5.2	Plants will grow optimally $$	(1)
	3.5.3	Plants will wither $$	(1)
	3.5.4	Plants will die $$	(1) [35]

QUESTION 4: SOIL SCIENCE

4.1	Soil morphology					
	4.1.1	Determination of age of the soil Matured/old soil $$	(1)			
	4.1.2	Reason• Horizons are clearly differentiated. $\sqrt{}$ • Significantly developed soil profile. $\sqrt{}$ (Any 1 x 2)	(2)			
	4.1.3	Soil profile				
		$ \begin{array}{ccc} O \\ A \\ B \\ C \end{array} OR \frac{O}{A} \\ \frac{B}{C} \end{array} $	(2)			
	4.1.4	Indication of the letter representing a horizon (a) C $$	(1)			
		(b) B	(1)			
	4.1.5	TWO diagnostic horizons of the horizon labelled B	(')			
	т. т. о	• Humic $$ • Vertic $$ • Melanic $$ • Orthic $$ (Any 2 x 1)	(2)			
4.2	Catior	adsorption				
	4.2.1	Identification of the form of acidity Labelled A – Reserve acidity $$ Labelled B – Active acidity $$	(2)			
	4.2.2	Justification Reserve acidity – Hydrogen ions are bound onto soil colloid. $$ Active acidity – Hydrogen ions are concentrated on soil solution. $$				
	4.2.3	Indication of the letter representing acidity that have an effect on				
		plant B √	(1)			
	4.2.4	Reason Plants use plant nutrients dissolved in soli solution. $$	(1)			
	4.2.5	Appropriate term for ability of soil to exchange cations Cation exchange capacity $$	(1)			

4.3 **Sodic and saline soils**

Comparing sodic and saline soils

			SODIC SOIL	SALINE SOIL	
4.3.1	(a)	Dominant	Sodium	Chloride and sulphates of	
		salts	carbonates√	sodium, calcium, magnesium $$	(2)
	(b)	Colour	Black √	White $$	(2)

4.3.2 Exchange reaction of sodic soils $\sqrt{}$

$$Na + \sqrt{+ CaSO_4} \sqrt{-Ca^{2+} + NaSO_4} \sqrt{-(3)}$$

4.4 **TWO ways the soil benefit from breaking down of plant and animal residue**

- The decay process $\sqrt{}$ releases nutrients to the soil. $\sqrt{}$
- Formation of humus $\sqrt{1}$ leads to improved soil structure. $\sqrt{1}$ (4)

4.5 **Processes during nitrogen cycle**

4.5.1 **Identification of the processes**

- A Assimilation $\sqrt{}$
- B Denitrification $\sqrt{}$
- C Nitrification $\sqrt{}$
- D Mineralisation $\sqrt{}$

4.5.2 Soil conditions favouring denitrification Wet conditions $\sqrt{}$

4.6 **Organic matter**

4.6.1 **THREE practices leading to the decline of organic matter**

- Intensive tillage $\sqrt{}$
- Monoculture $\sqrt{}$
- Use of artificial fertilisers $\sqrt{}$
- Poor veld management and burning $\sqrt{}$
- Waterlogged soil conditions $\sqrt{}$
- Overgrazing $\sqrt{}$
- Removal of crop residue from the field $\sqrt{}$ (Any 3 x 1) (3)

[35]

(4)

(1)

TOTAL SECTION B: 105

GRAND TOTAL: 150