

TIME: 2 hours

This question paper consists of 11 pages and a Periodic Table.

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION

- This question paper consists of EIGHT questions. Answer ALL the questions in the ANSWER BOOK.
- Number the answers correctly according to the numbering system used in this question paper.
- Leave ONE line between two sub questions, for example between QUESTION 2.1 and QUESTION 2.2.
- You may use a non-programmable calculator.
- You may use appropriate mathematical instruments.
- YOU ARE ADVISED TO USE THE ATTACHED DATA SHEET.
- Show ALL formulae and substitutions in ALL calculations.
- Round off your FINAL numerical answers to a minimum to TWO decimal places.
- Give brief motivations, discussions, et cetera where required.
- 10. Write neatly and legibly.

QUESTION 1: MULTIPLE- CHOICE

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write down only the letter (A - D) next to the question number (1.1 - 1.7) in the answer book, for example 1.8. D.

3

- 1.1 The property of material to shape on hammering is called... (2)
 - A Hard
 - B Brittle
 - C Ductile
 - D Malleable

1.2 The process whereby solid CO₂ changes to gas without forming a liquid is... (2)

- A Boiling
- B Evaporation
- C Sublimation
- D Condensation
- 1.3. The energy released when an electron is attached to an atom or molecule to (2) form a negative ion is...
 - A Electron affinity
 - B Electronegativity
 - C Ionisation energy
 - D 1st ionisation energy
- 1.4. Which one of the following reactions can be classified as redox reaction? (2)
 - A $Cu^{2*}(aq) + O^{2*}(aq) \rightarrow CuO(s)$
 - B $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$
 - C KCI (aq) + AgNO₃ (aq) → KNO₃ (aq) + AgCI (s)
 - D $ZnCl_2$ (aq) + CaSO₄ (aq) \rightarrow ZnSO₄ (aq) + CaCl₂(aq)

- 1.5. The bond whereby there is a complete transfer of electron(s) from one atom to (2) another is called...
 - A Ionic Bond
 - B Dative bond
 - C Metallic bond
 - D Covalent bond
- 1.6. The chemical name for SO₄²⁻ is ...
 - A Sulphite ion
 - B Sulphide ion
 - C Sulphate ion
 - D Sulphur trioxide
- 1.7. A Specific name given to an atom that has lost electron(s) (2)
 - A lon
 - B Atom
 - C Cation
 - D Anion

[14]

(2)

5

Downloaded from Stanmorephysics.com

QUESTION 2

Si, water-ethanol, CuSO₄, Fe₂O₃, cooking oil- iron filings, Fe, Cl₂

2.1.	From above list identify the:						
	2.1.1. Heterogeneous mixture	(1)					
	2.1.2. Semi-metal.	(1)					
	2.1.3. Compound.	(1)					
	2.1.4. Rust.	(1)					
	2.1.5. The substance that exists as a gas at room temperature.	(1)					
2.2.	Now, consider thoroughly stirred water-ethanol at room temperature.						
	2.2.1. Is this a homogeneous or heterogeneous mixture?	(2)					
	Explain the answer.						
	2.2.2. Name a suitable separation technique that can be used to separate water-ethanol mixture	(1)					
	2.2.3. Name the physical property used in this technique mentioned in 2.2.2	(1)					
	2.2.4. Which component of the mixture will be left behind?	(1)					
	2.2.5. Why is this mixture considered miscible?	(2)					

6 Grade 10 Common Test June 2019

QUESTION 3

100

The two graphs (not drawn to scale) below represent the change in temperature of two substances, X and Y, when heated for a certain time. Both substances were in the solid phase at t = 0 minutes.

50 Substance Y Substance 0 т (°C) -50 -100 t, Time (minutes) 3.1. (2)Define temperature. 3.2 At t1, write down the particle arrangement of: 3.2.1. X (1) 3.2.2. Y (1)

- 3.3. Now, consider point P of substance X:
 3.3.1Name the process taking place at P. (1)
 3.3.2.There is no change in temperature. Explain why that is the case. (2)
- 3.4. At -50°C, write down the phase(s) of:
 (1)

 3.4.1. X
 (1)

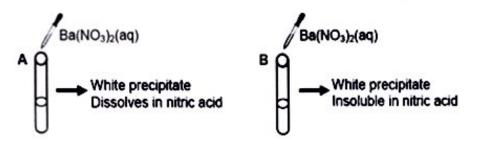
 3.4.2. Y
 (1)
- 3.5. Is the boiling point of substance X HIGHER THAN, LOWER THAN or THE SAME (1) AS the boiling point of substance Y?
- One of the substances from the above graphs is water. (2)
 Which substance (X or Y) represents water? Explain the reason for the answer.

)

[12]

Physical Sciences P2

7


Common Test June 2019

Downloaded from Stanmorephysics.com

An el	ement has the following electron configuration: $1s^2 2s^2 2p^6 3s^2 3p^3$	
4.1	For the element write down the:	
	4.1.1 Group number on the periodic table. Give a reason for the answer by referring to the above electron configuration.	(2)
	 4.1.2 Period number in the periodic table. Give a reason for the answer by referring to the above electron configuration. 	(2)
4.2.	Use Lewis structures to show the bond formation between	(3)
	aluminium (At) and oxygen (O).	
4.3.	A certain element, Q, is in-group VII of the periodic table.	
	For this element, write down the:	
	4.3.1. Name of the group.	(1)
	4.3.2. Normal valency.	(1)
	4.3.3. Number of valence electrons.	(1)
	4.3.4. Chemical equation that shows the formation of element Q ion.	(2)
4.4	The symbol notation for a certain element is:	
	³¹ ₁₅ X	
	4.4.1. Draw the energy level (Aufbau) diagram.	(2)
	4.4.2. Write down the name of an element.	(1)

QUESTION 5

Two unlabelled SODIUM compounds are found in the laboratory, but laboratory technician stated that only sulphate and carbonate were on the inventory. Simplified experiment used to determine the sodium salts is shown in the diagram below:

5.1.	Name the type of reaction done by adding Ba(NO ₃) ₂	(1)

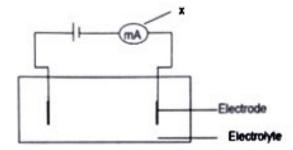
5.2.	Write down the formula of Sodium salt in:	
	5.2.1. Test tube A	(2)
	5.2.2. Test tube B	(2)
5.3.	Write down the name of precipitate formed in:	
	5.3.1. Test tube A.	(2)
	5.3.2. Test tube B.	(2)
5.4.	White precipitate in test tube A dissolved after the addition of nitric acid.	(4)

Write down a balanced chemical equation to show this reaction.

[13]

Physical Sciences P2

9


Common Test June 2019

Downloaded from Stagmonephysics.com

QUESTION 6

Sodium chloride crystals are added to water and dissociate to form an electrolyte.

The experimental set up below was used to determine the electrical conductivity of sodium chloride solution.

6.1	Define an electrolyte.	(2)
6.2.	What physical quantity is measured by component X?	(1)
6.3.	What is meant by the term dissociation?	(2)
6.4	Use the chemical equation to explain the answer in 6.3.	(2)
6.5.	How would the increase in concentration of the solution affect the reading on X? (Choose from: INCREASES; DECREASES or REMAINS THE SAME) Explain the answer.	(3)
		[10]

QUESTION 7

Study the following diagrams and then answer the questions set.

A	Initially	Finally
	*** 8	
	Initially	Finally
в	0.0	۵ <u></u> ۵
		Å

7.1.	Identify the letter that represents:	
	7.1.1. Physical change.	(1)
	7.1.2. Chemical change.	(1)

- 7.2. Now, consider A:
 - 7.2.1. State the law of conservation of mass. (2)
 7.2.2. With the use of calculations, determine whether the law in 7.2.1. is (3) obeyed or not obeyed.
 - 7.2.3. Name the type of bond between nitrogen and hydrogen at the final (1) stage.
- 7.3. Use the Lewis structure to write down an equation for the formation of the (3) molecule in B.

[11]

Downloaded from Stanmorephysics.com

QUESTION 8

8.1. Given the data on the table below answer the questions that follows

Element	Ionization energies (kJ∙mol ⁻¹)									
	1 st	2 nd	3 rd							
Potassium	419	3051	4419							

- 8.1.1. Define the first ionization energy. (2)
- 8.1.2. State the trend of ionization energy of potassium as it moves from (1) first to third.
- 8.1.3. Give a reason for the trend identified in 8.1.2.
- 8.1.4. The first ionization energy of potassium is 419 kJemol⁻¹, whereas the (2) first ionization energy of sodium is 496 kJemol⁻¹.

Describe the difference between these two GROUP 1 elements.

8.2. Magnesium naturally exists as isotopes, ²⁴Mg, ²⁵Mg and ²⁶Mg.

Isotope	% abundance	Atomic Mass number
²⁴ Mg	78,99	23,985
²⁵ Mg	10,00	24,959
²⁶ Mg	11,01	25,983

8.2.1 Explain the term "isotopes".

8.2.2. Calculate the relative atomic mass of magnesium.

(2) (4)

(2)

[13]

TOTAL MARKS: 100

Physical Sciences P2

12 Grade 10

,					Gra	de	10											_	_	_																			
	81 [] M	Fe 5	20 Ne 10	18	Å Å	36	ž	84	2	Xe	131	86	Ł			11	12 22	103	5																				
	5 1		ощ 0′⊁		35,5 35,5	35	8'Z	80	53	5'2	127		s'e			2	8 5	102	Ŷ																				
	3 3		°0 %	16	32 0	34	_	61	52		128	84	5,0 2,0			69	169 1	101	PW																				
	₽S		3,5 2,5	15		33	As	75	51	Sb	122	83	6'I	209		89	167 ET	100	Ë																				
	\$		9,0 ∞ 3,0	14		32		73	20	Sn 1,9	119	82		207		67	₽ 5	66	ŝ																				
ENTS	₽Î		5,5 2,5	13		31		70	49	<u>п</u> 8'1	115	2	1 2	204		99	Ç₿	86	ŭ																				
ILEME	12		5,0		5'L	30	•••	65	48	_	112		Hg 8,1	201		5	159	67	¥																				
PERIODIC TABLE OF ELEMENTS	÷	Atom				29	CL 9'F	63,5	47	Ag 17	108	61	Au	197		5	151	96	G																				
TABLE	9				Atomic number Atoomgetal	mic number toomgetal	nic number toomgetal	a' ber	ber al	ber al	ber al	ber al	ber al	ber al	al al	al al	al al	100		ass ssa	28	6'L	59	46		106	78	ž	195		63	15 EU	95	Am					
DIC	o																					al a	al a	al	al	Symbol Simbool		iomic m oomma	27	-	69	45	_	103	1	-	192		62
PERIC	80											8,5 CL 8,5	7	lative at tiewe at	26	Fe 8,1	56	4		5	26	ő	190		61	E	93	å											
THE	2									6,1		Approximate relative atomic mass Benaderde relatiewe atoommassa	25	8'L 8'L	55	43	5'5 LC		75	Re	186		80	5	92	D ‱	3												
TABLE 3: THE	9				egativit igatiwit		Approxi Benade	24	9'F	52	42	8'L 6'L	96	74	3	184		20	z₹	91	Pa	1																	
TAB	ŝ	KEYISLEUTEL	Electronegativity Elektronegatiwitelt			23	9'L	51	41		92	73	Ta	181		28	9 2	6	۲ŝ	1																			
	4	KE	KE	ш			22	II g'L		4	14 2	91		9'L	179																								
									21	ŝ	45	39	≻	89	_	Ľ	139	68 .	Å]																			
	3		• 8 ₀	12	Mg 24	20	Ca 5'1	-	38	S,1 2,1	88	56	Ba	137	88	Ra 226																							
	-		5'1	_	1'5	\vdash	0,1			0'1			6'0	_		5'0	-																						
	- 8		~ I ~	7		19	¥		37	_	86	55		133		Ē																							
		1'2	0'1		6'0		8'0			8,0	_		2'0			2'0																							