testpapers.co.za

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION JUNE 2017

GRADE 10

PHYSICAL SCIENCES PAPER 2

CHEMISTRY

TIME: 90 minutes

MARKS: 100

9 pages + 1 data sheet

GAUTENG DEPARTMENT OF EDUCATION

PROVINCIAL EXAMINATION

PHYSICAL SCIENCES Paper 2

TIME: 90 minutes

MARKS: 100

INSTRUCTIONS

- 1. Answer ALL the questions in the ANSWER BOOK.
- 2. This question paper consists of TWO sections

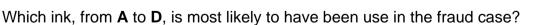
SECTION A: 20 marks SECTION B: 80 marks

- 3. You may use a non-programmable calculator.
- 4. You may use appropriate mathematical instruments.
- 5. Number the answers correctly according to the numbering system used in this question paper.
- 6. Give brief motivations, discussions, et cetera where required.
- 7. Round-off your final numerical answers to a minimum of TWO decimal places.

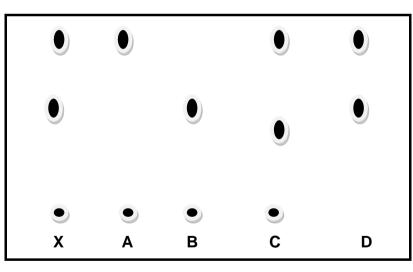
(2)

(2)

(2)


(2)

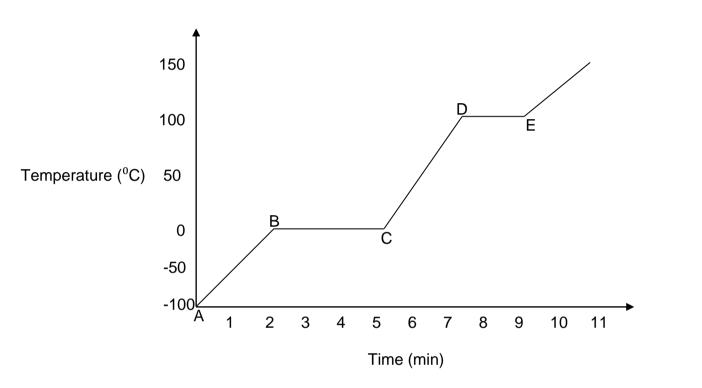
SECTION A


QUESTION 1: MULTIPLE-CHOICE QUESTION

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A - D) next to the question number (1.1 - 1.10) in the ANSWER BOOK.

- 1.1 The three subatomic particles of an atom are ...
 - A neutrons, ions, protons.
 - B electrons, neutrons, cations.
 - C electrons, protons, neutrons.
 - D protons, electrons, neutral.
- 1.2 Elements are arranged in the periodic table according to their ...
 - A relative atomic mass.
 - B mass number.
 - C atomic number.
 - D atomic mass.
- 1.3 The diagram below shows a chromatogram of an ink X used in a fraud case and four inks A, B, C and D from four suspects.

- 1.4 Which of the following is a homogenous mixture?
 - A Oil and water
 - B Ethanol
 - C Air
 - D Sand and water

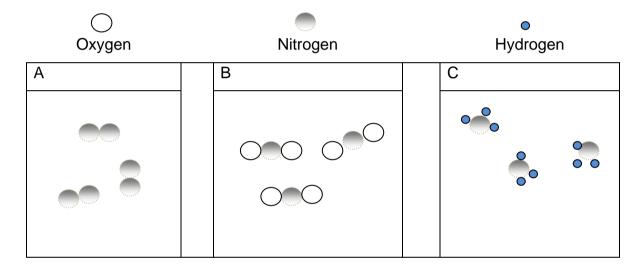


1.5	The change in phase from a gas to liquid is called							
	A B C D	melting. condensation. freezing. boiling.	(2)					
1.6	An ex	ample of a diatomic molecule is						
	A B C D	Cl ₂ H ₂ O CO ₂ H ₂ O ₂	(2)					
1.7	The fo	bllowing electron configuration 1s ² 2s ² 2p ⁶ 3s ² , represent						
	A B C D	Na Mg ²⁺ F ⁺ Mg	(2)					
1.8	The c	orrect formula for aluminium oxide is						
	A B C D	Al ₂ O ₃ Al ₃ O ₂ AlO ₃ AlO	(2)					
1.9	Which	of the following is a physical reaction?						
	A B C D	Sugar caramelises Iron and sulphur are melted together Gold melts. A piece of magnesium burns in air.	(2)					
1.10		of the following equations shows the balanced chemical equation between nium and chlorine?						
	A B C D	$\begin{array}{l} Al + Cl \rightarrow AlCl \\ Al + Cl_2 \rightarrow AlCl_2 \\ 2Al + 3Cl_2 \rightarrow 2AlCl_3 \\ 4Al + 3Cl_2 \rightarrow 2Al_2Cl_3 \end{array}$	(2) [20]					
		TOTAL SECTION A:	20					

SECTION B

QUESTION 2

Learners conducted an experiment to determine the heating curve of water. They heated ice in a beaker and recorded the temperature of the water over a period of time. The results for the experiment are shown in the graph below.


2.1	Write down a suitable aim for the experiment.	(2)						
2.2	Write down the							
	2.2.1 dependent variable.	(1)						
	2.2.2 independent variable.	(1)						
2.3	The following apparatus and chemicals were used during the experiment: A bunsen burner, a trip stand and gauze, a beaker, ice, a thermometer and a stop watch.							
	Write down, in point form, the method used to conduct the experiment.	(4)						
2.4	Making reference to intermolecular forces and average kinetic energy between molecules, explain what is happening							
	2.4.1 between points D and E.	(3)						
	2.4.2 at point A.	(3)						

PHYSICAL SCIENCES Paper 2 (CHEMISTRY) GRADE 10 6

2.5 Are the changes shown by the results in the graph above, physical or chemical? Explain your answer. (3)
2.6 If the heating continues beyond point E, will the water be changed into oxygen and hydrogen. Explain you answer. (3) [20]

QUESTION 3

- 3.1 Differentiate between *an element* and *a compound*.
- 3.2 The table below is a key of elements.

Use the key and the diagrams A, B and C above to answer the questions that follow.

3.2.1	Which compound (A, B or C) is considered to be an element?	(1)
3.2.2	What type of bond exists between atoms in compound B?	(1)
3.2.3	Write down the chemical formulae for each of the compounds represented by A, B and C.	(3)
3.2.4	Draw Lewis diagrams for compounds A and C.	(4)
3.2.5	Write down the CHEMICAL NAME for compounds A, B and C.	(3)
3.2.6	Use the above key and a diagram to represent the balanced chemical equation below:	

$$N_{2}(g) + O_{2}(g) \rightarrow NO_{2}(g)$$

$$(4)$$
[20]

P.T.O.

(4)

QUESTION 4

Study the table below and answer the questions follow.

Atom	Electron configuration
A	$1s^2 2s^2 2p^1$
В	$1s^{2}2s^{2}2p^{2}$
С	$1s^{2}2s^{2}2p^{3}$
D	$1s^{2}2s^{2}2p^{4}$
E	1s ² 2s ² 2p ⁵
F	1s ² 2s ² 2p ⁶

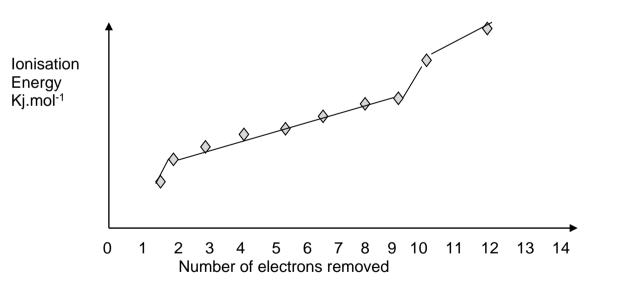
		[9]
4.7	Which atom will form an ion with a charge of 3+ and what is the real name of this atom?	(2)
4.6	Which element has the same number of valence electrons as Sulphur?	(1)
4.5	If the elements represented above are for elements in the second period of the periodic table, which atom is represented by C?	(1)
4.4	How many valence electrons does atom E have?	(1)
4.3	Identify which atom in the table above has the greatest first ionisation energy.	(1)
4.2	Explain what is meant by first ionisation energy.	(2)
4.1	Which atom represented above is a noble gas?	(1)

QUESTION 5

Three isotopes of magnesium exists in nature. The magnesium isotopes Mg-25 and Mg-26 are used during absorption, circulation and metabolism in animals and humans. The relative abundance and masses of the isotopes of magnesium are shown in the table below. Study the table and answer the questions follow.

	Percentage abundance	Relative Isotope Mass
²⁴ Mg	78,99	23,985
²⁵ Mg	10,00	24,986
²⁶ Mg	11,01	25,985

5.1 Define the term *isotope*.


(2)

(3)

(2)

(4)

- 5.2 Draw the aufbau diagram for the magnesium ion formed.
- 5.3 Explain what is meant by *relative atomic mass*.
- 5.4 Determine the relative atomic mass for the element magnesium.
- 5.5 The following graph shows the consecutive ionisation energies for the element magnesium.

- 5.5.1 Write down the electron configuration of the magnesium.
- 5.5.2 What conclusion can be drawn from the graph of ionisation energy against the number of electrons removed?
- 5.5.3 Explain your answer to Question 5.5.2 in terms of core electrons and valance electrons

(4) **[19]**

(2)

(2)

PHYSICAL SCIENCES Paper 2 (CHEMISTRY) GRADE 10 9

QUESTION 6

6.1	Give the Law of Conservation of Mass.	(2)
6.2	The Haber Process is a reaction used in the production of fertilizer. The chemical equation for the reaction is shown below:	
	$N_2(g)$ + $H_2(g) \rightarrow NH_3(g)$	
	6.2.1 Is the reaction a synthesis or decomposition reaction?	(1)
	6.2.2 Give a reason for your answer to Question 6.2.1.	(2)
6.3	Use the Law of Constant Composition to determine whether mass is conserved during the reaction above.	(5)
6.4	Write down a balanced equation to demonstrate that mass is conserved for the Haber process.	(2) [12]
	TOTAL SECTION B:	80
	TOTAL:	100

PHYSICAL SCIENCES Paper 2 (CHEMISTRY) GRADE 10 ¹⁰

THE PERIODIC TABLE OF ELEMENTS / DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (I)		2 (II)		3		4	5		6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
	1	1									A	tomic n	umber									2
2,1	Ĥ.						ł	KEY/S	LEU	ITEL		Atoom	getal									He
N,												Ļ	-									
<u> </u>	1	<u> </u> .		1							Γ	29							· · -			4
	3	5	4					Elec	tron	egativ	vity 🔪	ື Cu	Sy	mbol			5	6	7	8	9	10
1,0	Li	1,5	Be					Elekt	rone	egatiw	iteit	<u>_</u>	51	mbool			°, ₿	2,5	° N	0 ^{3,5}	\$ F	Ne
	7	L.	9									63,5					11	12	14	16	19	20
	11		12								-	Ť					13	14	15	16	17	18
6,0	Na	1,2	Mg							Approx	ximate	relative	atomic	mass			\$A ⊈	😤 Si	₩ P	S S	<mark>ે</mark> દર	Ar
	23		24							Benad	erde re	latiewe	atoomn	nassa			27	28	31	32	35,5	40
	19		20		21		22	2	3	24	25	26	27	28	29	30	31	32	33	34	35	36
0,8	Κ	1,0	Ca	e,	Sc	1,5	Ti	۲ ب	/ "	Cr	₽́Mn	<mark>⇔</mark> Fe	[∞] Co	ç⇔ Ni	ို့ Cu	ຶ ⊈ Zn	😤 Ga	[∞] Ge	_ត ្ត As	∛ Se	္လ Br	Kr
0	39	-	40	-	45	-	48	5		52	55	56	59	59	63,5	-	70	73	75	79	80	84
	37		38		39		40	4	-	42	43	44	45	46	47	48	49	50	51	52	53	54
0,8	Rb	1,0	Sr	1,2	Ŷ	4	Zr		b 🛱		₽ Tc							[∞] Sn	≎ Sb	⊼ Te	40 I	Xe
0		-	88	-	-	-		1	2	- WO 96	- 10			106	-		1	-			N 107	
	86 55	<u> </u> .	56	<u> </u> .	89 57	<u> </u> .	91 72		2 3	74	75	101	77	78	108 79	<u>112</u> 80	<u>115</u> 81	119 82	122 83	128 84	127 85	131 86
		6			-	6					1	1				1						1 1
0,7	Cs	0,9	Ва		La	1,6	Hf		a	W	Re			Pt	Au	Hg		₽ Pb	-	ដ Po	🖧 At	Rn
	133	<u> </u>	137	<u> </u>	139	<u> </u>	179	18	31	184	186	190	192	195	197	_ 201	204	207	209			
	87		88		89																	
0,7	Fr	0,9	Ra		Ac			58		59	60	61	62	63	64	65	66	67	68	69	70	71
			226					Ce		Pr	Nd	Pm	Sm	Eu	Gd	Tb		Ho	Er		Yb	Lu
·		• •		•		-					1	FIII		1		1	Dy	1	1	Tm	1	
								140		141	144		150	152	157	159	163	165	167	169	173	175
								90		91	92	93	94	95	96	97	98	99	100	101	102	103
								Th	1	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232			238											