NATIONAL SENIOR CERTIFICATE

GRADE 10

NOVEMBER 2019

MATHEMATICS P2 MARKING GUIDELINE (EXEMPLAR)

MARKS: $\mathbf{1 0 0}$

This marking guideline consists of 8 pages.

Consistent accuracy (CA) marking, applies in ALL aspects of the marking guideline.

QUESTION 1

48	50	52	59	60	68	73	76	76	76
78	79	80	81	82	82	84	91	92	98

1.1.1	$\text { Median }=\frac{76+78}{2}=77$		\checkmark answer	(1)
1.1.2	$\begin{aligned} & \text { Lower quartile }=\frac{60+68}{2}=64 \\ & \text { Upper quartile }=82 \end{aligned}$		\checkmark lower quartile \checkmark upper quartile	(2)
1.1.3	$\begin{aligned} \text { Interquartile range }(\mathrm{IQR}) & =\mathrm{Q}_{3}-\mathrm{Q}_{1} \\ & =82-64=18 \end{aligned}$		\checkmark substitution \checkmark answer	(2)
1.1.4	Min $=48$ and max $=98$		\checkmark min and max	(1)
1.1.5			\checkmark min and max $\checkmark \mathrm{Q}_{1}$ and Q_{3} $\checkmark \mathrm{Q}_{2}$	(3)
1.1.6	Skewed to the left or negatively skewed		\checkmark answer	(1)

1.2	Duration (min)	No of calls (f_{1})	Midpoint (x_{1})	$\left(f_{1}\right) \times\left(x_{1}\right)$	
	$2 \leq t<5$	47	3,5	164,5	
	$5 \leq t<8$	139	6,5	903,5	
	$8 \leq t<11$	211	9,5	2004,5	
	$11 \leq t<14$	102	12,5	1275	
	$14 \leq t<17$	58	15,5	899	
	$17 \leq t<20$	19	A	B	
		576		5598	
1.2.1	$\mathbf{A}=18,5$ and $\mathbf{B}=351,5$			\checkmark answer of A \checkmark answer of B	
					(2)
1.2.2	$\begin{aligned} \text { approximate mean } & =\frac{\text { sum of } f_{1} \times x_{1}}{\text { sum of } f_{1}} \\ & =\frac{5598}{576} \\ & =9,7 \text { minutes } \end{aligned}$			\checkmark sum of all $\left(f_{1}\right) \times\left(x_{1}\right)$ \checkmark sum of all $\left(f_{1}\right)$ \checkmark answer	
1.2.3	$75^{\text {th }} \text { percentile lie }=\frac{75}{100} \times 576=432$ In the interval $11 \leq \mathrm{t}<14$			$\checkmark 432$ \checkmark interval (2)	
					[17]

QUESTION 2

2.1	$\begin{aligned} & \mathrm{A}(-2 ; 6), \mathrm{B}(6 ; 8) \text { and } \mathrm{C}(4 ; 0) \\ & \mathrm{d}_{\mathrm{AB}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\ &=\sqrt{(6-(-2))^{2}+(8-6)^{2}} \\ &=2 \sqrt{17} \\ & \mathrm{~d}_{\mathrm{BC}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\ &=\sqrt{(4-6)^{2}+(0-8)^{2}} \\ &=2 \sqrt{17} \\ & \therefore \mathrm{AB}=\mathrm{BC} . \end{aligned}$	\checkmark formula \checkmark substitution \checkmark distance AB \checkmark substitution \checkmark distance of BC	(5)		
2.2	ABCD is a kite adjacent sides are equal	\checkmark kite \checkmark motivation	(2)		
2.3	$\begin{aligned} & \mathrm{A}(-2 ; 6), \mathrm{B}(6 ; 8) \text { and } \mathrm{C}(4 ; 0) \\ & \text { Midpoint of } \mathrm{BC} \end{aligned}=\left(\frac{x_{2}+x_{1}}{2} ; \frac{y_{2}+y_{1}}{2}\right), ~ \begin{aligned} & =\left(\frac{-2+6}{2} ; \frac{8+6}{2}\right)=\mathrm{G}(2 ; 7) \\ \text { Midpoint of } \mathrm{AB} & =\left(\frac{x_{2}+x_{1}}{2} ; \frac{y_{2}+y_{1}}{2}\right) \\ & =\left(\frac{4+6}{2} ; \frac{0+8}{2}\right)=\mathrm{H}(5 ; 4) \end{aligned}$	\checkmark formula \checkmark substitution \checkmark coordinates of G, mdpt of BC \checkmark substitution \checkmark coordinates of H , mdpt of AB	(5)		
2.4	$\begin{aligned} & B \hat{A} D=B \hat{C} D \quad \text { (opposite } \angle \text { 's of a kite are }=\text {) } \\ & A \hat{E} H=E \hat{D} B \quad \text { (corresponding } \angle \text { 's }, \mathrm{EG} \\| \mathrm{DB}) \\ & \text { but } E \hat{D} B=B \hat{D} C \text { (diagonals of a kite) } \\ & \therefore A \hat{E} G=B \hat{D} C \\ & \therefore \triangle \mathrm{AEG} \\| \Delta \mathrm{CDB} . \text { (A A A) } \end{aligned}$	$\checkmark S \checkmark R$ \checkmark SR $\checkmark 3^{\text {rd }}$ angle or reason			
			[16]		

QUESTION 3

3.1.1	$\begin{aligned} & x^{2}=35^{2}-28^{2} \\ & x=21 \\ & \therefore \cos \theta=\frac{21}{35} \end{aligned}$	\checkmark sub in Pythagoras $\checkmark x=21$ $\checkmark \frac{21}{35}$	(3)
3.1.2	$\begin{aligned} \sin ^{2} \theta+\cos ^{2} \theta & =\left(\frac{28}{35}\right)^{2}+\left(\frac{21}{35}\right)^{2} \\ & =1 \\ & =\text { RHS } \end{aligned}$	$\begin{aligned} & \checkmark\left(\frac{28}{35}\right)^{2} \\ & \checkmark\left(\frac{21}{35}\right)^{2} \\ & \checkmark 1 \end{aligned}$	
3.2	$\begin{aligned} & \text { If } 37 \sin \theta+35=0 \\ & \therefore \begin{array}{l} x^{2}=37^{2}-35^{2} \\ x=12 \end{array} \\ & \begin{aligned} & 24 \sec \theta-70 \cot \theta \\ &= 24\left(\frac{37}{-12}\right)-70\left(\frac{-12}{-35}\right) \\ &=-74-24 \\ &=-98 \end{aligned} \end{aligned}$	$\checkmark \sin \theta=\frac{-35}{37}$ $\checkmark 3^{\text {rd }}$ quadrant $\checkmark x$ value $=-12$ $\checkmark \checkmark$ substitution \checkmark answer	(6)
3.3.1	$\begin{aligned} 8 \cos \left(x+10^{\circ}\right) & =5 \\ \cos \left(x+10^{\circ}\right) & =\frac{5}{8} \\ x+10^{\circ} & =51,32^{\circ} \\ x & =41,32^{\circ} \end{aligned}$	$\begin{aligned} & \checkmark \cos \left(x+10^{\circ}\right) \\ & \checkmark x+10^{\circ} \\ & \checkmark \text { answer } \end{aligned}$	

QUESTION 4

4.1		\checkmark intercepts \checkmark turning pts \checkmark shape (3)
4.2	period of $\mathrm{g}=360^{\circ}$	\checkmark answer
4.3	$\begin{aligned} & \text { range of } m(x) \text { if } m(x)=-3 f(x)+1 \\ & \text { range of }-3 \mathrm{f}(\mathrm{x}):-3 \leq y \leq 3 \\ & \text { range of } m(x):-2 \leq y \leq 4 \end{aligned}$	\checkmark notation $\checkmark \checkmark$ endpoints (3)
4.4	g decreasing: $90^{\circ}<x<270^{\circ}$	\checkmark notation \checkmark endpoints
4.5	$\begin{aligned} & f(x) \times g(x)<0 \\ & 90^{\circ}<x<180^{\circ} \text { or } 270^{\circ}<x 360^{\circ} \end{aligned}$	\checkmark notation \checkmark endpoints \checkmark endpoints (3)
		[12]

QUESTION 5

5.1	$\begin{aligned} & \mathrm{ADC}=53^{\circ} \quad(\angle \mathrm{s} \text { on a straight line }) \\ & \mathrm{D} \hat{\mathrm{CB}}=116^{\circ} \quad(\text { supplementary adj } \angle \mathrm{s}) \\ & \mathrm{CBA}=101^{\circ} \quad(\angle \mathrm{s} \text { on a straight line }) \\ & \begin{aligned} \mathrm{BAD} & =360^{\circ}-53^{\circ}-116^{\circ}-101^{\circ} \\ & =90^{\circ} \quad\left(\angle \mathrm{s} \text { of a quad }=360^{\circ}\right) \end{aligned} \end{aligned}$ Answer only: full marks, provided one reason is given	\checkmark SR \checkmark SR \checkmark SR \checkmark answer (4)
5.2	$\begin{aligned} & \text { Let } \mathrm{DE} \mathrm{~B}=y \text { and } \mathrm{FE} \mathrm{C}=k \\ & \therefore \hat{\mathrm{~B}}=180^{\circ}-2 y \text { and } \hat{\mathrm{C}}=180^{\circ}-2 k \quad\left(\angle \mathrm{~s} \text { of a } \Delta=180^{\circ}\right) \\ & \text { In } \triangle \mathrm{ABC}: x+180^{\circ}-2 y+180^{\circ}-2 k=180^{\circ} \\ & 2 y+2 k=x+180^{\circ}+180^{\circ}-180^{\circ} \\ & \mathrm{y}+k=\frac{1}{2} x+90^{\circ} \\ & \qquad \hat{E} F=90^{\circ}-\frac{1}{2} x(\angle \mathrm{~s} \text { on a straight line }) \end{aligned}$	$\begin{aligned} & \checkmark \mathrm{SR} \\ & \checkmark \mathrm{SR} \\ & \checkmark \mathrm{~S} \\ & \checkmark \mathrm{SR} \end{aligned}$
		[8]

QUESTION 6

6.1.1	$\begin{aligned} & \mathrm{AP}=\mathrm{DE} \text { and } \mathrm{AQ}=\mathrm{DF} \text { (given) } \\ & \hat{\mathrm{A}}=\hat{\mathrm{D}} \quad \text { (given) } \\ & \Delta \mathrm{APQ} \equiv \Delta \mathrm{DEF} \text { (SAS) } \end{aligned}$	\checkmark given $\checkmark \Delta$'s similar \checkmark reason		
6.1.2	$\begin{aligned} & \mathrm{A} \hat{P Q}=\hat{\mathrm{E}} \quad(\triangle \mathrm{APQ} \equiv \Delta \mathrm{DEF}) \\ & \text { But } \hat{\mathrm{B}}=\hat{\mathrm{E}} \quad \text { (given) } \\ & \therefore \quad \mathrm{APQ}=\hat{\mathrm{B}} \\ & \therefore \quad \mathrm{PQ}\|\mid \mathrm{BC} \text { (a pair of corresponding } \angle \mathrm{s} \text { are }=\text {) } \end{aligned}$	\checkmark Statement \checkmark Statement \checkmark Reason		
6.1.3	$\begin{aligned} & \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}(\triangle \mathrm{ABC}\\| \\| \mathrm{DEF}) \\ & \frac{7,5}{3,5}=\frac{8}{\mathrm{DF}} \\ & \begin{aligned} \mathrm{DF} & =\frac{8 \times 3,5}{7,5} \\ & =3,7 \end{aligned} \end{aligned}$	\checkmark SR \checkmark substitution \checkmark simplification \checkmark answer		
6.2.1	Converse of midpoint theorem	\checkmark answer		

| 6.2 .2 | $\mathrm{BD}=\sqrt{32} \quad \therefore \mathrm{AD}=\sqrt{32}$ | $\checkmark \mathrm{BD}=\mathrm{AD}$ |
| :--- | :--- | :--- | :--- |
| | $\therefore \mathrm{EF}=\sqrt{32} \quad$ (opp sides of a parallelogram) | $\checkmark \mathrm{S} \checkmark \mathrm{R}$ |
| | $\therefore \mathrm{CG}=2 \sqrt{32} \quad$ (midpt theorem) | |
| $=8 \sqrt{2}$ | $\checkmark \mathrm{SR}$ | |
| | | \checkmark answer |
| | | |

QUESTION 7

TSA of cone $=$ TSA of hemisphere $\begin{aligned} \pi \mathrm{r}^{2}+\pi \mathrm{r} s & =3 \pi \mathrm{r}^{2} \\ \pi \mathrm{rs} & =2 \pi \mathrm{r}^{2} \\ s & =2 x \quad(r=x) \end{aligned}$ but $s^{2}=h^{2}+x^{2}$ $\begin{aligned} & \therefore h^{2}+x^{2}=4 x^{2} \\ & \therefore h=\sqrt{4 x^{2}-x^{2}} \\ & \quad=\sqrt{3} x \end{aligned}$		\checkmark equating the TSA \checkmark use of Pythagoras \checkmark substituting $s=2 x$ \checkmark h subject of formula
		(4)
		[4]
	TOTAL:	100

