

NATIONAL SENIOR CERTIFICATE

GRADE 10

NOVEMBER 2019

MATHEMATICS P2 MARKING GUIDELINE (EXEMPLAR)

MARKS: 100

This marking guideline consists of 8 pages.

Consistent accuracy (CA) marking, applies in ALL aspects of the marking guideline.

48	50	52	59	60	68	73	76	76	76		
78	79	80	81	82	82	84	91	92	98		
111			70							/	
1.1.1	Median	$n = \frac{76}{}$	$\frac{+78}{-}$ = '	77						✓ answer	(1)
1 1 2			2	<u></u>							(1)
1.1.2	Lower c	quartile	$=\frac{60+}{2}$	$\frac{-68}{-64} = 64$	4					✓ lower quartile	
	Unnerg	mortila	_ 02							\checkmark upper quartile	
	Opper q	uartile	- 02							11 1	(2)
1.1.3	Interqu	artile rai	nge (IQ	R) = Q	$_{3} - Q_{1}$					\checkmark substitution	
				= 8	82 – 64 =	= 18				✓ answer	$\langle \mathbf{O} \rangle$
114	Min _ /	19 and m	av = 0	0						1 min and may	(2)
1.1.4	WIIII — 2	+0 and m	lax – 9	0							(1)
1.1.5											(1)
	I								I	\checkmark min and max	
				1						• Q_1 and Q_3	
										$\checkmark Q_2$	(2)
	45 5	0 55	60	65 70	75	80	85 90	95	100		(3)
1.1.6	Skewed	to the l	eft or ne	gatively	skewed					✓ answer	
											(1)
12	Duroti	on (min)	N	of calls	(f_i)	Midno	$int(r_i)$		$(f_{i}) \times$	(22)	
1.2	2 < 1	$\frac{011}{t}$		<u>47</u>	()1)	Mildpo	$\frac{\operatorname{IIII}(\lambda_1)}{3.5}$	(<u>/ 1) ×</u> 1	$\frac{(x_1)}{64.5}$	
	$\frac{2}{5} < t$	$\frac{1}{t} < 8$		139			6.5			003.5	
	$8 \leq t$	t < 11		211			9,5		2	004,5	
	$11 \leq t$	<i>t</i> < 14		102			12,5		-	1275	
	$14 \leq t$	<i>t</i> < 17		58			15,5			899	
	$17 \leq t$	t < 20		19			Α			B	
				576						598	
1.2.1	$\mathbf{A} = 18$	3,5 and	$\mathbf{B} = 35$	1,5						✓ answer of A	
										\checkmark answer of B	
											(2)
1.2.2	approxi	imate me	$ean = \frac{su}{s}$	$m of f_1$	$\langle x_1 \rangle$					of sum of all	
	TT -			sum of f	c 1					• sum of an $(f)_{\times}(r)$	
			= 5	598						$(J_1)^{(\lambda_1)}$	
			-	576						• sum of an (f_1)	
			= 9	9,7 min	utes					• answer	(3)
1.2.3	7 c th		75	574	420						(5)
	/5 th pero	centile li	$e = \frac{100}{100}$	$\times 5/6 =$	432					✓ 432	
	In the in	nterval	11 ≤ t <	< 14						✓ interval	
											(2)
1											[1/]

2.1	A(-2;6), $B(6;8)$ and $C(4;0)$		
	$d_{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	✓ formula	
	$= \sqrt{(6 - (-2))^2 + (8 - 6)^2}$	\checkmark substitution	
	$= 2\sqrt{17}$	✓ distance AB	
	$d_{BC} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		
	$= \sqrt{(4-6)^2 + (0-8)^2}$	\checkmark substitution	
	$= 2\sqrt{17}$	✓ distance of BC	
	\therefore AB = BC.		(5)
2.2	ABCD is a kite	✓ kite	
	adjacent sides are equal	✓ motivation	
			(2)
2.3	A(-2;6), $B(6;8)$ and $C(4;0)$		
	Midpoint of BC = $\left(\frac{x_2 + x_1}{2}; \frac{y_2 + y_1}{2}\right)$	\checkmark formula \checkmark substitution	
	$= \left(\frac{-2+6}{2};\frac{8+6}{2}\right) = G(2;7)$	✓ coordinates of G, mdpt of BC	
	Midpoint of AB = $\left(\frac{x_2 + x_1}{2}; \frac{y_2 + y_1}{2}\right)$ = $\left(\frac{4+6}{2}; \frac{0+8}{2}\right) = H(5; 4)$	 ✓ substitution ✓ coordinates of H, mdpt of AB 	
			(5)
2.4	$B\hat{A}D = B\hat{C}D$ (opposite \angle 's of a kite are =)	\checkmark S \checkmark R	
	$A\hat{E}H = E\hat{D}B$ (corresponding \angle 's, EG DB)	✓ SR	
	but $EDB = BDC$ (diagonals of a kite)		
	$\therefore A\hat{E}G = B\hat{D}C$	\checkmark 3 ^{ra} angle or reason	(4)
	$\therefore \Delta AEG \parallel \mid \Delta CDB. (A A A)$		(4)
			[16]

3.1.1	$x^2 = 35^2 - 28^2$	✓ sub in Pythagoras	
	x = 21	$\checkmark x = 21$	
	$\therefore \cos \theta = \frac{21}{35} \qquad \qquad 35 \qquad 28$	$\checkmark \frac{21}{35}$	
			(3)
3.1.2	$\sin^2\theta + \cos^2\theta = \left(\frac{28}{35}\right)^2 + \left(\frac{21}{35}\right)^2$	$\checkmark \left(\frac{28}{35}\right)^2$	
	= 1	$\checkmark \left(\frac{21}{27}\right)^2$	
	= KHS	(35)	
		Ĩ	(3)
3.2	If $37\sin\theta + 35 = 0$		
	$\therefore \sin \theta = -\frac{35}{37}$	-35	
	$x^2 = 37^2 - 35^2$	$\checkmark \sin \theta = \frac{1}{37}$	
	x = 12		
	-12	\checkmark 3 rd quadrant	
	- 35 37	$\checkmark x$ value = -12	
	$24 \sec \theta - 70 \cot \theta$		
	$=24(\frac{37}{12})-70(\frac{-12}{25})$	$\checkmark \checkmark$ substitution	
	-12 -35 = -74 - 24	✓answer	
	= -98		(6)
3.3.1	$8\cos(x+10^\circ) = 5$		(0)
	$\cos(x+10^{\circ}) = \frac{5}{2}$	$\checkmark \cos(x+10^\circ)$	
	$x + 10^\circ = 51.32^\circ$	$\checkmark x + 10^{\circ}$	
	$x = 41,32^{\circ}$	✓ answer	
			(3)

3.3.2	$\csc 2x = 2$	
	$\sin 2x = \frac{1}{2}$	$\checkmark \sin 2x = \frac{1}{2}$
	$2r - 30^{0}$	$\sqrt{2r} = 30^{\circ}$
	$x = 15^{\circ}$	\checkmark 2x = 50 \checkmark answer
		(3)
3.4	$\frac{\sin 30^{\circ} \times \tan 60^{\circ}}{\tan 30^{\circ} \times \cos 60^{\circ}} = \frac{\frac{1}{2} \times \frac{\sqrt{3}}{1}}{\frac{1}{\sqrt{3}} \times \frac{1}{2}}$ $= 3$ $= RHS$	$\checkmark \frac{1}{2}$ $\checkmark \sqrt{3}$ $\checkmark \frac{1}{\sqrt{3}}$ $\checkmark \frac{1}{2}$ $\checkmark \text{ answer}$ (3)
		(5)
3.5.1	$\sin 55^\circ = \frac{x}{2}$	✓ using sin 55°
	15	✓ answer
	$x = 15 \times \sin 55^{\circ}$	(2)
	$= 12,29^{\circ}$	(2)
	OR	
	$\cos 35^\circ = \frac{x}{1}$	✓ using cos35°
	15	✓ answer
	$x = 12,29^{\circ}$	(2)
3.5.2	$\tan 21^\circ = \frac{4,4}{y}$	✓ using tan 21°
		1 onewor
	$y = \frac{1}{\tan 21^{\circ}}$	· allswei (2)
	= 11,46	(2)
	OR	
	$\tan 69^\circ = \frac{y}{4,4}$	
	y = 11,46	
	OR	✓ Pythagoras
	$y^2 = 12,29^2 - 4.4^2$	• answer (2)
	y = 11,48	(2) [77]
		[27]

$\begin{array}{c c} \text{ADC} = 53^\circ & (\angle \text{s on a straight line}) \\ \hat{\text{DCB}} = 116^\circ & (\text{supplementary adj } \angle \text{s}) \\ \hat{\text{CBA}} = 101^\circ & (\angle \text{s on a straight line}) \\ \hat{\text{BAD}} = 360^\circ - 53^\circ - 116^\circ - 101^\circ \\ &= 90^\circ & (\angle \text{s of a quad} = 360^\circ) \end{array}$	wer
Answer only: full marks, provided one reason is given	(4)
5.2 Let $\hat{DEB} = y$ and $\hat{FEC} = k$	
$\therefore \hat{B} = 180^{\circ} - 2y \text{ and } \hat{C} = 180^{\circ} - 2k (\angle s \text{ of } a \Delta = 180^{\circ})$ $In \land ABC: x + 180^{\circ} - 2y + 180^{\circ} - 2k - 180^{\circ}$	
$2y + 2k = x + 180^{\circ} + 180^{\circ} - 180^{\circ}$	
$\mathbf{y} + k = \frac{1}{2}x + 90^{\circ} \qquad \checkmark \mathbf{S}$	
$D\hat{E}F = 90^\circ - \frac{1}{2}x$ (\angle s on a straight line) \checkmark SR	. (1)
	[8]

6.1.1	AP = DE and AQ = DF (given)	✓ given
	$\hat{A} = \hat{D}$ (given)	$\checkmark \Delta$'s similar
	$\Delta APO \equiv \Delta DEF (SAS)$	✓ reason
		(3)
6.1.2	$A\hat{P}Q = \hat{E} (\Delta APQ \equiv \Delta DEF)$	
	But $\hat{B} = \hat{E}$ (given)	✓ Statement
	$\therefore \hat{APQ} = \hat{B}$	Statement
	\therefore PQ BC (a pair of corresponding \angle s are =)	✓ Reason
		(3)
6.1.3	$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} (\Delta ABC \mid \mid \mid \Delta DEF)$	✓ SR
	$\frac{7,5}{3,5} = \frac{8}{\text{DF}}$	✓ substitution
	DF = $\frac{8 \times 3,5}{7,5}$ = 3,7	 ✓ simplification ✓ answer (4)
6.2.1	Converse of midpoint theorem	✓ answer (1)

6.2.2	$BD = \sqrt{32} \therefore \ AD = \sqrt{32}$	✓ $BD = AD$
	\therefore EF = $\sqrt{32}$ (opp sides of a parallelogram)	✓S✓R
	\therefore CG = 2 $\sqrt{32}$ (midpt theorem)	✓ SR
	$= 8\sqrt{2}$	✓ answer (5)
		[16]

TSA of cone = TSA of hemisphere	
$\pi r^{2} + \pi r s = 3\pi r^{2}$ $\pi r s = 2\pi r^{2}$ $s = 2x (r = x)$ hat $r^{2} + r^{2}$	✓ equating the TSA
$ \begin{aligned} & \text{out } s = h + x \\ & \therefore h^2 + x^2 = 4x^2 \\ & \therefore h = \sqrt{4x^2 - x^2} \\ & = \sqrt{3}x \end{aligned} $	✓ use of Pythagoras ✓ substituting s = 2x ✓ h subject of formula (4)
	[4]
TOTAL:	100