
GR 10 MATH + MLIT.

Mathematics	2	Common Test March 2019
	GRADE 10 MEMORANDUM	

QUESTION 1

1.1.1	$6x^2 + 7x - 20 = (3x - 4)(2x + 5)$	$\checkmark (2x+5) \checkmark (3x-4) $ (2)
1.1.2	$x^{3} + x^{2} - x - 1$ = $x^{2}(x+1) - 1(x+1)$ = $(x^{2} - 1)(x+1)$ = $(x - 1)(x+1)(x+1)$	 ✓ common bracket ✓ factors ✓ diff. of two squares (3)
1.2.1	$(2x+3)(5-x) = 10x - 2x^2 + 15 - 3x = -2x^2 + 7x + 15$	$\begin{array}{c} \checkmark -2x^2 \\ \checkmark +7x \\ \checkmark +15 \end{array} \tag{3}$
1.2.2	$(xy^3 - 3)(x^2y^6 + 3xy^3 + 9) = (x^3y^9 - 27)$	$\begin{array}{c} \checkmark x^{3}y^{9} \\ \checkmark -27 \end{array} $
1.2.3	$\frac{3^{2x-1} \cdot 5^{x-3}}{45^{x-2}} = \frac{3^{2x-1} \cdot 5^{x-3}}{(3^2 \cdot 5)^{x-2}} = \frac{3^{2x-1} \cdot 5^{x-3}}{3^{2x-4} \cdot 5^{x-2}} = 3^{2x-1-2x+4} \cdot 5^{x-3-x+2} = 3^3 \cdot 5^{-1} = \frac{27}{5}$	✓ base as prime factors (3 ² .5) ✓ simplification ✓ adding and subtracting indices ✓ 3 ³ .5 ⁻¹ or $5\frac{2}{5}$ (4)
		(14)

Mathematics

Com. . Test March 2019

GRADE 10 MEMORANDUM ŝ

Mathematics

GRADE 10 MEMORANDUM

Common Test March 2019

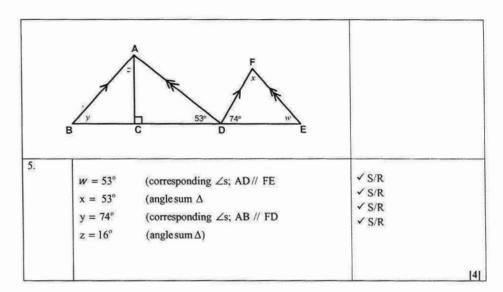
QUESTION 3

(2) (] (2) (1) \checkmark denominator = 0 ✓ answer ✓ answer ✓ answer V answer 121 $P = \sqrt{\frac{-20(7)}{1-3(7)}} = \sqrt{7}$ √9 <√7 <√4 3 <√7 < 2 1 - 3x = 0x+2 $x = \frac{1}{2}$ 6 8 3.2.1 3.2.2 3.1 3.3

QUESTION 4

y + 2x = 6(Eq 2)	
$(Eq2)\times2 \rightarrow 2y+4x=12 \dots (Eq3)$	✓multiply (Eq 2) by 2
$(Eq 1) \rightarrow 3y + 4x = 10 \dots (Eq 4)$	
$(Eq 3) - (Eq 4) \rightarrow -y = 2$	✓ subtracting
y = -2	(<i>Eq</i> 3) and (<i>Eq</i> 4)
Substitute $y = -2$ into $(Eq 2) \rightarrow -2+2x = 6$	V y-value
2x = 8	\checkmark substitution of y back into E_{α}
x=4	\checkmark x-value
OR/OF	OR/OF
$4x = 10 - 3y \dots (Eq_1)$	100-1000-01
y + 2x = 6(Eq 2)	2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3
$(Eq 2) \times 3 \rightarrow 3y + 6x = 18 \dots (Eq 3)$	\checkmark multiply (Eq 2) by 3
$(Eq 1) \rightarrow 3y + 4x = 10 \dots (Eq 4)$	Loubtenation
$(Eq 3) - (Eq 4) \rightarrow 2x = 8$	(Ea3) and $(Ea4)$
x = 4	\checkmark x-value
Substitute $x = 4$ into $(Eq 2) \rightarrow y + 2(4) = 6$	 substitution of x back
y=-2	into Eq
	 y-value
4	

QUESTION 2	0N 2	
2.1	(x-3)(x+2) = 0 $\therefore x=3 \text{ or } x=-2$	V answers (2)
2.2	$11 \times 3^{2,x+1} = 297$ $3^{2,x+1} = 27$ $3^{2,x+1} = 3^{3}$ $\therefore 2x + 1 = 3$ 2x = 2 x = 1	 dividing through by 11 3³ 3³ answer
2.3	$\frac{4x^2 - 3x - 1}{4x + 1} + \frac{x^3 + 1}{x^2 - x + 1} = 2$ $\frac{4x + 1}{4x + 1} + \frac{x^3 + 1}{x^2 - x + 1} = 2$ $\frac{4x + 1}{4x + 1} = 2$ $\frac{4x + 1}{x^2 - x + 1} = 2$ $2x = 2$ $x = 1$	$\bigvee factors (x+1)(x^2 - x + 1) (x+1)(x^2 - x + 1) (x+1)(x-1) (x) factors (4x+1)(x-1) \checkmark answer (5)$
2.4	$\pi x^2 h = V$ $x^2 = \frac{V}{\pi h}$ $x = \sqrt{\frac{V}{\pi h}}$	 ✓ dividing by πh ✓ answer (2)


Please turn over

GRADE 10 MEMORANDUM

5

	OR/OF	OR/OF
	$4x = 10-3y \dots (Eq1)$ $y + 2x = 6 \dots (Eq2)$ $(Eq2) \rightarrow y = 6-2x \dots (Eq3)$ Substitute (Eq3) into (Eq1) $\rightarrow 4x = 10-3(6-2x)$ $4x = 10-18+6x$ $-2x = -8$ $x = 4$ Substitute $x = 4$ into (Eq3) $\rightarrow y = 6-2(4)$ $y = -2$	 ✓ (Eq 3) ✓ Substitution of (Eq 3) into (Eq 1) ✓ x-value ✓ substitution of x back into Eq ✓ y-value
		(5)
4.2.1	$-9 \le 2x + 3 < 5$ $-12 \le 2x < 2$ $-6 \le x < 1$	$\begin{array}{c} \checkmark 2x \\ \checkmark -6 \\ \checkmark 1 \end{array} $ (3)
4.2.2	-7 -6 -5 -4 -3 -2 -1 0 1 2	✓ answer (1)
4.2.3	$x \in [-6;1)$	✓ answer (1)
4.3	Let the first number $= x$ \therefore second number $= 2x-4$ and third number $= 4x + 2$	$\checkmark 2x-4 \\ \checkmark 4x+2$
	$\therefore \frac{x + (2x - 4) + (4x + 2)}{3} = 25$ x + 2x - 4 + 4x + 2 = 75	✓ equation for mean
	7x - 2 = 75 7x = 77	
	x = 7	
	The smallest number is therefore 7.	✓ answer
		(4)
		[14]

QUESTION 5

6

GRADE 10 MEMORANDUM

QUESTION 6

6.1.1	Kite	✓ answer
6.1.2	Parallelogram OR Rectangle OR Square	(1) ✓ answer (any one)
6.2	Rhombus OR Square	✓ answer (any one) (1)
6.3	Rectangle	✓ answer (1)
		[4]

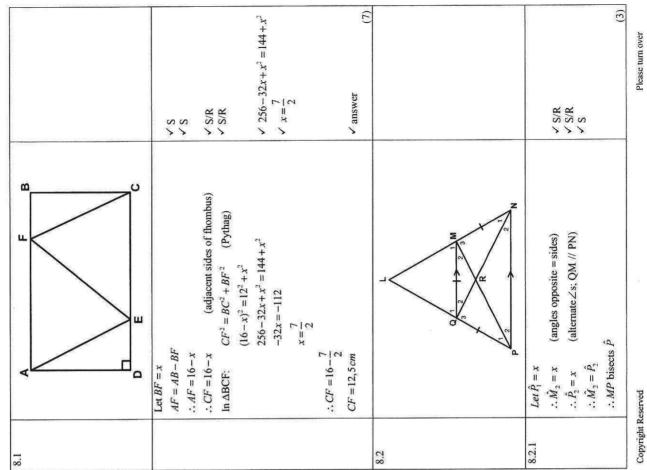
Mathematics

Comi. Fest March 2019

GRADE 10 MEMORANDUM

QUESTION 7

			(3)				(3)
	✓ S/R	✓ S/R	✓ answer	$\checkmark F\hat{G}H = 75^{\circ}$ \checkmark answer		✓ S/R	V S/R V S/R
H A A A A A A A A A A A A A A A A A A A	$F\hat{E}G = 3x$ alternate $\angle s; FE//GH$) $I_{III} \wedge FFK$:	$4x+3x+75^\circ = 180^\circ$ (angle sum Δ) $7x = 105^\circ$	$x = 15^{\circ}$	$F\hat{G}H = 5x$ $F\hat{G}H = 5(15^{\circ}) = 75^{\circ}$ $\therefore G\hat{H}E = 105^{\circ}$ (co - interceior $\angle s$; $FE//GH$)	a a a a a a a a a a a a a a a a a a a	D C C $BP = DP$ (diagonals of parm) But $BY = DX$ (given)	$\therefore XP = YP$ $AP = CP$ (diagonals of parm) $\therefore AYCX \text{ is a parm}$ (diagonals of parm bisect each other)
3	7.1.1			7.1.2	72		


Mathematics

8 GRADE 10 MEMORANDUM

Common Test March 2019

Please turn over

Copyright Reserved

Mathematics

Common Te

GRADE 10 MEMORANDUM

6

< S/R
</pre>

(alternate ∠s; QM // PN) (alternate ∠s; QM // PN

 $\hat{P} = \hat{M}_2$ $\hat{N}_2 = \hat{Q}_2$

In ΔPRN and ΔQRM

8.2.2

 $P\hat{R}N = M\hat{R}Q$ (vertically opposite $\angle s$)

:. ΔPRN 111 ΔQRM (222)

Common Test March 2019

Mathematics

matics

Common Test March 2019

GRADE 10 MEMORANDUM

10

	GEOMETRY • MEETKUNDE
	A mark for a correct statement (A statement mark is independent of a reason)
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)
	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)
	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)
-	Award a mark if statement AND reason are both correct
XIC	Ken 'n punt toe as die bewering EN rede beide korrek is

(3) [**13**]

✓ S/R

TOTAL: 75

Copyright Reserved

Please turn over